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Abstract

In this supplementary material, we provide the detailed
derivations, discussions and experiment settings. In Sec. 1,
the approximation of the superquadric surface area is de-
tailed. In Sec. 2, we further discuss the stability problem
about the optimization. In Sec. 3, we present the mathe-
matical formulation of the S-step, which includes the can-
didate generation and the switching strategy. In Sec. 4, we
introduce how to conduct equal-distance sampling on a su-
perquadric surface. Finally, in Sec. 5, detailed experiment
settings are presented.

1. Interpolation of Superquadric Area

Generally, the surface area Aθ of a superquadric cannot
be expressed in closed-form with {ε1, ε2, ax, ay, az} (note
that the surface area is independent of the pose {R, t}).
However, closed-form solution is available when the shape
parameter {ε1, ε2} is a combination of 0 and 2.

(1) When {ε1, ε2} = {0, 0}, the superquadric is a
cuboid, whose surface area is

A{0,0} = 8(axay + ayaz + axaz) (1)

(2) When {ε1, ε2} = {0, 2}, the superquadric is a hexa-
hedron, whose surface area is

A{0,2} = 8az(a
2
x + a2y)

1
2 + 4axay (2)

(3) When {ε1, ε2} = {0, 2}, the superquadric is a octa-
hedron, whose surface area is

A{2,0} = 4(ax(a2y + a2z)
1
2 + ay(a2x + a2z)

1
2 ) (3)

(4) Lastly, when {ε1, ε2} = {2, 2}, the superquadric is a
octahedron, whose surface area is

A{2,2} = 8 (a0(a0 − axy)(a0 − ayz)(a0 − axz))
1
2 (4)

where
axy = (a2x + a2y)

1
2

ayz = (a2y + a2z)
1
2

axz = (a2x + a2z)
1
2

a0 = (axy + ayz + axz)/2

We approximate the area with a bi-linear interpolation

Aθ =

[
1− ε1/2
ε1/2

]T [
A{0,0} A{0,2}
A{2,0} A{2,2}

] [
1− ε2/2
ε2/2

]
(5)

We test the interpolation method exhaustively throughout
the convex region of superquadrics, and it shows an average
relative error of less than 10% compared with the the area
calculated through the triangular mesh. More importantly,
the bi-linear interpolation can fully capture the property that
the surface area of a superquadric grows monotonically with
ε1 and ε2.

2. Discussion on Optimization
The Levenberg–Marquardt (LM) algorithm is widely

used in superquadrics fitting [2, 3, 6, 7]. However, it has
been confirmed that the optimization suffers from numeri-
cal instability as either one of the shape parameters ε1 or ε2
approaches 0. As a consequence, most of the methods com-
promise by constraining the lower bounds of the shape pa-
rameters to 0.1, resulting in less accuracy when representing
shapes with sharp edges, e.g., cuboids and cylinders. In [7],
the authors claim that the problem is caused by the inherent
instability of the implicit function and its gradient. They
solve this problem by approximating the implicit function
with linear functions in the unstable region. We find out that
the instability can also be explained as being introduced by
the way that the LM deals with the bound. When the opti-
mization steps outside of the bound, it will be simply pro-
jected back to the nearest point on the bound. Therefore, if
we set the lower bounds of ε1 and ε2 to 0, the LM algorithm
is likely to be forced to visit the points on the hyperplane of
the lower bounds, where the implicit function is not well de-
fined. In contrast, the trust-region-reflective [1] tackles the



bounding condition differently by conducting a line search
along the reflective path, and thus avoid directly checking
the value of the implicit function on the bound. There-
fore, by utilizing the trust-region-reflective, our method can
maintain numerical stability without approximating the im-
plicit function, as shown in Fig. 1. It can be observed that
both of the methods are stable; however, [7] shows less ac-
curacy in recovering the superquadric parameter within the
unstable region, which is caused by their approximation of
the implicit function.

Figure 1. Performance in the unstable region. The error is
evaluated by log10(‖[ε1, ε2, ax, ay, az]− [ε1, ε2, ax, ay, az]gt‖2),
where [ε1, ε2, ax, ay, az] is the estimated shape and scale parame-
ters and [ε1, ε2, ax, ay, az]gt is the ground-truth. (a) The recovery
error of NS. (b) The recovery error of the proposed method.

3. Similarity and Switching
In this section, we show the detailed mathematics formu-

lation of the S-step (geometry-guided local optimum avoid-
ance) in Sec. 3.5 of the paper. First, we formulate how
to search for candidate parameters {θci} encoding similar
superquadrics from the current estimation θ, which is, pre-
sumably, a local optimum. Recall that the superquadric pa-
rameter θ = {ε1, ε2, ax, ay, az,R, t} (Sec. 2.1 in the pa-
paer). We denote R = [r1, r2, r3], where r1, r2 and r3
are orthonormal column vectors, corresponding to the di-
rections of the x, y and z-axis (principal axis) of the su-
perquadric frame, respectively.

Axis-mismatch similarity: In this category, we can ob-
tain 2 candidates by re-assigning the principal axis to the
x-axis and the y-axis, and re-arranging the corresponding
shape, scale and rotation parameters:

θc1 = {ε2, ε1, ay, az, ax, [r2, r3, r1], t}
θc2 = {ε2, ε1, az, ax, ay, [r3, r1, r2], t}

(6)

It can be easily verified that both [r2, r3, r1] and [r3, r1, r2]
are proper rotation matrices (orthogonal with determinant
equals to 1). When ε1 = ε2, the shapes encoded by the
candidate parameters are identical to the current estimation.
This can be proved by substituting the candidate parameters
into the implicit function of superquadrics. In more gen-
eral cases, θc1 and θc2 provides two superquadrics similar to

θ, and thus hold similar likelihoods when evaluated by the
probabilistic model. Examples are visualized in Fig. 2.

Figure 2. Similar superquadrics encoded by candidate parameters
generated via axis-mismatch similarity. (a) The underlying shape
of the current estimation θ = [1.5, 1.7, 1, 1.2, 0.8, I, [0, 0, 0]T ].
(b) The underlying shape of the candidate θc

1. (c) The underlying
shape of the candidate θc

2.

Duality Similarity: The duality similarity is more com-
plex compared with the axis-mismatch similarity. To
well illustrate the idea, we first review a property of su-
perquadrics. When viewed from the superquadric frame
(that is, not considering the spatial pose of the su-
perquadric), a superquadric can be interpreted as the spher-
ical product of two superellipses. This property can be
shown by expressing the superquadric surface with its para-
metric equation

p(η, ω) =

 ax cosε1 η cosε2 ω
ay cosε1 η sinε2 ω

az sinε1 η

 (7)

where p(η, ω) is a bijective function which maps a point
on a unit sphere [cos η, sinω] ∈ S2 to a point on the su-
perquadric surface (parameterized by {ε1, ε2, ax, ay, az}).
It can be observed that

p(η, ω) =

[
cosε1 η
az sinε1 η

]
⊗
[
ax cosε2 ω
ay sinε2 ω

]
(8)

where ⊗ denotes the spherical product. The right-hand side
of the equation indicates a spherical product of two su-
perellipses (paramaterized by {ε1, 1, az} and {ε2, ax, ay},
respectively). We call the former one the superellipse along
the principal axis (z-axis), and the latter one the superellipse
orthogonal to the principal axis.

Now that we have decoupled a superquadric into a pair
of superellipses, it is natural to ask: can we find a similar
superquadric by exploiting similar superellipses? Actually,
this goal can be achieved by utilizing the parametric am-
biguity of the superellipse orthogonal to the principal axis
({ε2, ax, ay}). When ax = ay = ā, we can always obtain
a similar or even identical superellipse by (1) generating a
‘dual’ superellipse {2− ε2, ā, ā}; (2) rotating π/4 about the
centroid; and (3) scaling āwith a scaler s. Then, we are able
to obtain a similar superquadric by conducting the spherical
product[

cosε1 η
az sinε1 η

]
⊗
([

cos π4 − sin π
4

sin π
4 cos π4

] [
s · ā cos2−ε2 ω
s · ā sin2−ε2 ω

])



Figure 3. Generate candidate superquadrics with duality similarity. The blue superquadrics are the current estimation. The red su-
perquadrics demonstrate how similar superquadrics are generated by a sequence of transformations.

Examples are shown in Fig. 3. When ε2 = 0, ε2 = 1 or
ε2 = 2, the generated superquadric is identical to the origi-
nal one (Eq. (8)). In more general cases, the generated su-
perquadric provides a candidate similar to the original one.
By taking the pose of the superquadric into consideration
and relaxing ax = ay with ax ≈ ay (in this paper, we as-
sume ax ≈ ay when 0.8 < |ax/ay| < 1.2), we can obtain a
general formulation of the duality similarity as follows

θc3 = {ε1, 2− ε2, s · ā, s · ā, az,R ·Rz(π/4), t} (9)

where

s =

{ ((
1−
√

2
)
ε2 +

√
2
)

if ε2 ≤ 1(√
2/2− 1

)
ε2 + 2−

√
2/2 otherwise

ā = (ax + ay)/2

s is the scale which compensates the expansion (when ε2 >
1) or shrinkage (when ε2 < 1) induced by the duality trans-
formation (2 − ε2 → ε2). Rz(π/4) denotes a rotation of
π/4 about the z-axis.

Combinations of Similarities: Similar superquadrics
can also be obtained by combining the axis-mismatch simi-
larity with the duality similarity. That is:

(1) when ay ≈ az , we re-assign the principal axis to the
y-axis and then look for its duality similarity

θc4 = {ε2, 2− ε1, s · ā, s · ā, ax, [r2, r3, r1] ·Rz(π/4), t}
(10)

where

s =

{ ((
1−
√

2
)
ε1 +

√
2
)

if ε1 ≤ 1(√
2/2− 1

)
ε1 + 2−

√
2/2 otherwise

ā = (ay + az)/2

(2) similarly, when ax ≈ az , we re-assign the principal
axis to the y-axis and then look for its duality similarity

θc5 = {ε2, 2− ε1, s · ā, s · ā, ay, [r3, r1, r2] ·Rz(π/4), t}
(11)

where

s =

{ ((
1−
√

2
)
ε1 +

√
2
)

if ε1 ≤ 1(√
2/2− 1

)
ε1 + 2−

√
2/2 otherwise

ā = (ax + az)/2

Switching Strategy: Utilizing the similarities, ‘high-
ways’ are built within the parameter space, connecting dis-
tant parameters encoding superquadrics with similar geo-
metric shapes. The S-step is triggered when the relative de-
crease of the negative log-likelihood is less than a threshold
δ. Utilizing the similarities, a set of candidate parameters
{θci} are generated based on the current estimation θ. Then,
we check if the negative log-likelihood can be further de-
creased from a candidate. If a valid candidate is found, we
switch to it and continue the optimization; Otherwise, we
declare the current estimation θ as optimal. The detailed
process of the S-step is summarized in Algorithm 1.

Algorithm 1 S-step: geometric local optimum avoidance

Input: θ, σ2,X . current estimation and point cloud
Output: θs, σ2

s , success . switched parameter
θs ← θ; σ2

s ← σ2

success← 0
l← Likelihood(θ, σ2,X) . negative log-likelihood
{θci} ← Similarities(θ) . generate candidates
for i = 1, ..., |{θci}| do

θ̂
c

i , σ̂
2
i ← EM(θci , σ

2,X) . update candidate
li ← Likelihood(θ̂

c

i , σ̂
2
i ,X)

if li < l then
θs ← θ̂

c

i ; σ
2
s ← σ̂2

i

success← 1
Break

end if
end for



Figure 4. Examples of different sampling strategies on a su-
perquadric with shape parameters ε1 = 0.5 and ε2 = 0.5. The
target sampling interval is ∆ = 0.05. We use a heatmap to demon-
strate the uniformity of the sampling results. The value of each
point denotes the average Euclidean distances between the point
and its four closest neighbors. (a-c) Results of the vanilla map-
ping, the method proposed by [7] and ours, respectively.

4. Equal-distance Sampling on Superquadric
Surface

Eq. (7) defines a bijective mapping between the unit
sphere and a superquadric surface. The most straightfor-
ward way of sampling points on a superquadric surface is to
sample η and ω within their range and then map to the target
surface utilizing Eq. (7). However, due to the non-linearity
of the mapping, points evenly distributed in the spherical
coordinates result in uneven samples on the superquadric
surface. In [7], the authors propose a method to obtain a
more homogeneous coverage of the surface. As shown in
Eq. (8), a superquadric is the spherical product of two su-
perellipses. Taking advantage of this property, two sets of
2D points are sampled independently on the periphery of
each superellipse with a fixed interval [5]. Then, samples
on the superquadric surface are constructed by taking the
spherical product of the points between the sets. As shown
in Fig. 4, the samples distribute more evenly compared with
the vanilla mapping approach. However, the density gets
significantly higher when the samples approach the poles
along the z-axis. As η → π

2 /
−π
2 , | cosε1 η| → 0 and the

perimeter of the sliced superellipse at higher latitude shrinks
accordingly. However, the superellipses at different lati-
tudes contain the same number of points, and thus resulting
in unevenly distributed samples after the spherical product.

To solve this problem, we improve the sampling strat-
egy as follows. Suppose the superquadric is parameterized
by {ε1, ε2, ax, ay, az}, which can be decoupled into two su-
perellipses {ε1, 1, az} and {ε2, ax, ay}. First, we sample
the superellipse {ε1, 1, az} with a fixed interval ∆ using
the algorithm in [5], and record the corresponding latitudes
ηi ∈ [−π/2, π/2], (i = 1, 2, ...). Then, instead of sam-
pling directly on the superellipse {ε2, ax, ay}, we sample
points evenly on re-scaled superellipses parameterized by
{ε2, ax cosε1 ηi, ay sinε1 ηi}. In other words, we adaptively
adjust the scale of the superellipse {ε2, ax, ay} according to
the current sampling latitude ηi. And finally, by conducting
the spherical product at each latitude, we obtain an overall
equal-distance sampling of the superquadric surface.

5. Implementation Details
All the baseline methods are implemented with the

official MATLAB Optimization Toolbox [4]. The step-
tolerance (TolX) and optimality-tolerance (TolFun) are all
set to 10−6. Due to the numerical instability of Implicit-
LSQ [6], Radial-LSQ [2] and Robust-fitting [3], the lower
bounds of the shape parameters ε1 and ε2 are set to 0.1, as
recommended by the authors. Following the settings in [7],
the lower bounds of ε1 and ε2 are set to 0 for the NS method.

For the proposed method, the lower bounds of ε1 and ε2
are set to 0. In Sec. 4.1 of the paper, the prior outlier prob-
ability ωo = 0 for the partial data experiments, ωo = 0.2
for the outlier experiments and ωo = 0.01 for the noise ex-
periments. ωo is set relatively low for the partial data and
noise experiments, since no artificial outliers are added. In
Sec. 4.2, ωo = 0.01 for the KIT dataset and ωo = 0.05 for
the BigBIRD dataset. We set a higher outlier probability for
the latter, since the point clouds are captured by a RGB-D
camera, resulting in more outliers and noise. ωo is set to 0.8
in the Sec. 4.3, since we need to identify a large number of
points as outliers in order to capture the major superquadric-
like shape from a complex object. Also in Sec. 4.3 of the
paper, the maximum layer of the multi-superquadrics recov-
ery is 3, and the cluster-pruning threshold is set to 60 points.
In all the experiments, the switching threshold δ = 0.1.
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