
Supplemental Material for “ Symmetry-aware Neural Architecture for
Embodied Visual Exploration”

Shuang Liu
RIKEN Center for AIP
shuang.liu.ej@riken.jp

Takayuki Okatani
Tohoku University, RIKEN Center for AIP

okatani@vision.is.tohoku.ac.jp

A. More Experimental Results

A.1. Experimental Results of Training on MP3D

In the main paper, we show the results of experiments in
which we train the models on the Gibson dataset; the mod-
els are then tested on Gibson and the MP3D dataset. We
show here the results when we train the models on MP3D
and test them on Gibson and MP3D. Specifically, we evalu-
ate two models, the original ANS and the proposed S-ANS.
Fig. 1 shows the results including those trained on Gibson
(already shown in the main paper). Method X trained on
Gibson and MP3D is denoted by X-Gibson and X-MP3D,
respectively.

We can make the following observations. First, it is seen
from Fig. 1(b) that when trained and tested on MP3D, S-
ANS outperforms ANS by a large margin of 5.4m2 (i.e., S-
ANS-MP3D = 86.2m2 vs. ANS-MP3D = 80.8m2)). This
validates the effectiveness of the proposed method (i.e., S-
ANS). Second, it is also seen from Fig. 1(b) that the perfor-
mance gap between models trained on Gibson and MP3D
is smaller for S-ANS (i.e., S-ANS-Gibson = 84.4m2 vs. S-
ANS-MP3D = 86.2m2) than for ANS (i.e., ANS-Gibson =
76.3m2 vs. ANS-MP3D = 80.8m2). Generally, we may
consider the performance of models trained and tested on
the same dataset as the upper bound of their performance.
S-ANS is closer to it, supporting our conclusion that the
proposed approach better handles the domain gap of the two
datasets by equipping the network with the symmetries nec-
essary for the task.

Third, when tested on Gibson, the gaps between the
models and between training datasets are small, as shown
in Fig. 1(a). Thus, the above two tendencies are not ob-
served. We believe this is because Gibson contains smaller
scenes and is simpler in complexity than MP3D. Thus, mod-
els trained on MP3D tend to achieve good performance on
Gibson, e.g., ANS-Gibson = 32.9m2 vs. ANS-MP3D =
33.1m2.

(a) Tested on Gibson

(b) Tested on MP3D

Figure 1. Exploration performance (in area coverage, m2) of ANS
trained on Gibson and MP3D and S-ANS trained on Gibson and
MP3D when tested on (a) Gibson and (b) MP3D. The method
X trained on Gibson and MP3D is denoted by X-Gibson and X-
MP3D, respectively.

A.2. Qualitative & Quantitative Analysis for Invari-
ant Representation

We experimentally evaluate rotation invariance of the
critic of S-ANS. Specifically, we compute the standard de-



Gibson MP3D

ANS 0.115 0.160
S-ANS 0.078 0.084

Table 1. Rotation invariance (i.e., std of (1)) of the critics of ANS
and S-ANS trained on Gibson seen over the evaluation episodes of
Gibson and MP3D.

viation of its output and the similarity of its feature repre-
sentations over inputs with different orientations.

To compute the standard deviation of the critic’s out-
put over input rotation, we firstly sampled Q state inputs
si, i = 1, 2, . . . Q of the global policy from the evalua-
tion episodes of Gibson (Q = 1988) and MP3D (Q =
3960), respectively. Then, we compute a rotated state in-
puts set S∗ = {ski |ski = rk · si, i ∈ {1, 2, . . . , Q}, k ∈
{0, 1, . . . ,K − 1}} for all the samples, where rk represents
rotating si by 2πk/K[rad] about its center. Then, the stan-
dard deviation is given by

std =
1

Q

Q∑
i=1

√√√√ K∑
k=0

(yki − ȳi)2, (1)

where ȳi =
1

K−1

∑K−1
k=0 yi and yki = q(ski ); q(·) represents

the function approximated by the critic. A smaller std indi-
cates better rotation invariance.

Table 1 shows std’s of the critic of ANS and that of S-
ANS (both trained on Gibson) when we set K = 24. It
is seen that S-ANS achieves better rotation invariance than
ANS for the both test datasets. It is worth noting that S-
ANS employs p4G-convolution, which theoretically attains
only invariance to 90 degree rotations, and has fully con-
nected layers that are not invariant to rotation; it neverthe-
less achieves better invariance over K = 24 sampling of the
rotation angles.

Next, we evaluate the similarity of the internal features
of ANS and S-ANS over rotated inputs. We use the feature
vector before the fully-connected layers for each model. For
this purpose, we compute the similarity between two rotated
inputs as

sim(ξ(sα), ξ(sβ)) =
1

Q− 1

Q−1∑
i=0

ξ(sαi ) · ξ(s
β
i )

∥ξ(sαi )∥ · ∥ξ(s
β
i )∥

, (2)

where α, β ∈ {0, 1, · · · ,K − 1}; sα = rα · s, s ∈ S∗;
and ξ(·) represents the function approximated by the layers
before fully connected layers in the critic networks.

Fig. 2 shows the matrices storing the above similarity as
elements for ANS and S-ANS over the evaluation episodes
of Gibson and MP3D. The average similarity increases from
0.06 of ANS to 0.40 of S-ANS on Gibson and from 0.07

to 0.55 on MP3D, respectively. These verify that S-ANS
achieves better rotation invariance in its feature representa-
tion.

(a) Avg.=0.06 (b) Avg.=0.40

(c) Avg.=0.07 (d) Avg.=0.55

Figure 2. Similarity of internal features over rotated inputs for (a)
ANS on Gibson, (b) S-ANS on Gibson, (c) ANS on MP3D, and
(d) S-ANS on MP3D. The two models are trained on Gibson. Avg.
indicates the mean value except the diagonal elements.

B. Implementation Details of FBE-RL
This section gives implementation details of FBE-RL.

FBE-RL is a RL based Frontier based exploration (FBE). It
is created by combining FBE and the global policy network
of ANS. Concretely, FBE-RL first computes the frontiers of
the local map hl

t, gaining its frontier map mf ∈ RG×G. The
elements on hl

t are 0 except for those at frontiers. Then it is
combined with the map of long-term goal m∗, computed by
the global policy network of ANS, to obtain a frontier like-
lihood map m′

f ∈ RG×G by element-wise multiplication
m′

f = m∗ ⊙ mf . At last the the normalized frontier like-
lihood map m′′

f (x, y) is computed by the softmax function

m′′
i =

emi∑
j e

mj
, (3)

where mi and m′′
i is the ith element of m′

f and m′′
f respec-

tively. A long-term goal is sampled from m′′
f for navigation.


