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Abstract

This document provides supplementary information on the following three aspects. First, we demonstrate more typical
examples of our proposed new benchmark, which can fully exhibit the superior diversity scenario of our benchmark. Then,
we give more visual comparisons against the state-of-the-arts. Finally, we discuss the limitation of our method and provide
some failure cases. The proposed dataset and code will be available at https://github.com/dlut-dimt/TarDAL.

1. More illustration of Multi-scenario Multi-modality Benchmark
To show the diversity of our benchmark (M3FD) more clearly, we provide more image pairs in Figure 1. Note that our

benchmark covers four major scenarios (i.e., daytime, overcast, night and challenge) with various environments, illumination,
season, and weather, having a wide range of pixel variations.

2. More Visual Comparisons
We provide more visual comparisons to verify the proposed method’s superiority against other state-of-the-art methods

on four datasets (three for fusion, two for detection). The visual comparisons on TNO, Roadscene and M3FD are shown
in Figure 2, Figure 3 and Figure 4, respectively. Furthermore, the visual comparisons of realizing object detection on fused
images are present in Figure 5 and Figure 6.

3. Limitations and Failure cases
As our network is trained according to the salient target from the infrared image and textural details form the visible

image, respectively. However, our method cannot perform well under the condition of when two input images are the slight
mis-alignment (see Figure 7).

To discuss the impact of unregistered images on our method, we initially synthesize mis-registered source images through
performing random affine and elastic translations with different degrees(i.e., slight, moderate and extreme) on the TNO,
Roadscene and M3FD datasets respectively. Then we use the proposed method for merging these mis-registered source
images. Visual results are shown in Figure 7, it can be seen that our method can deal with the slight unregistered images,
which preserves a large part of vital information. However, when pixel deviation is large, halos and artifacts emerge on the
fused results.
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Figure 1. Visualization of infrared-visible images on our M3FD dataset. The dataset covers extensive scenarios with various environments,
illumination, season, and weather.
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Figure 2. Visual results comparison between different methods on TNO Dataset Best viewed on screen.
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Figure 3. Visual results comparison between different methods on RoadScene dataset. Best viewed on screen.



Infrared image DenseFuse [1] FusionGAN [2] RFN [3] GANMcC [4]

Visible image DDcGAN [5] MFEIF [6] U2Fusion [7] TarDAL

Infrared image DenseFuse [1] FusionGAN [2] RFN [3] GANMcC [4]

Visible image DDcGAN [5] MFEIF [6] U2Fusion [7] TarDAL

Infrared image DenseFuse [1] FusionGAN [2] RFN [3] GANMcC [4]

Visible image DDcGAN [5] MFEIF [6] U2Fusion [7] TarDAL

Figure 4. Visual results comparison between different methods on Multispectral dataset. Best viewed on screen.
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Figure 5. Visual results comparison of object detection between different methods on Multispectral dataset, respectively.
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Figure 6. Visual results comparison object detection between different methods on our M3FD dataset. Best viewed on screen.
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Figure 7. Visual results of our fusion method on unregistered image pairs on the TNO,Roadscene and M3FD dataset, respectively. SMI,
MMI and EMI denotes slight misaligned, moderate misaligned and extreme misaligned infrared image, respectively. Best viewed on
screen.


