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A. Proof
Here we provide more details for the proof of Proposi-

tion 1 in the main text.

Proposition 1. A linear penalty (or a Lagrangian) for con-
straint d(l) = 0 is bounded from above and below by
DKL (u||s), up to additive constants:

DKL (u||s)− log(K)
c
≤ 1

K

∑
k

(max
j

(lj)− lk)
c
≤ DKL (u||s)

where
c
≤ stands for inequality up to an additive constant.

Proof. Given the expression of the KL divergence:
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where c
= stands for equality up to an additive and/or non-

negative multiplicative constants and u is the uniform dis-
tribution, and given the definition of softmax function:
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elk∑K
j elj

we have:
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Then, considering the following well-known property of the
LogSumExp function:

max
j

(lj) ≤ log

K∑
j

elj ≤ max
j

(lj) + log(K)
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We obtain :

DKL (u||s)− log(K)
c
≤ 1

K

∑
k

(max
j

(lj)− lk)
c
≤ DKL (u||s)

Furthermore, given the definition of the logit distances,
i.e., d(l) = (maxj(lj)−lk)1≤k≤K ∈ RK , the penalty term,
DKL (u||s), imposed by Label Smoothing (LS) is approx-
imately optimizing a linear penalty (or a Lagrangian) for
logit distance constraint:

d(l) = 0

which encourages equality of all logits.

B. Dataset Description and Implementation
Details

In this section, we present the description of all the
datasets used in our experiments, as well as the related im-
plementation details.
CIFAR-10 [5] is an image classification dataset that in-
cludes a total of 60,000 images with size 32 × 32,
divided equally into 10 classes. In our experiments,
we use the standard train/validation/test split containing
45,000/5,000/10,000 images, respectively. During the ex-
periments, we fixed the batch size to 128 and use SGD op-
timizer with a momentum of 0.9. The number of training
epochs is set to 350, with a multi-step learning rate decay
strategy, i.e., learning rate of 0.1 for the first 150 epochs,
0.01 for the next 100 epochs and 0.01 for the last 100
epochs. Data augmentation techniques like random crops
and random horizontal flips are applied on the training set.
Tiny-ImageNet [1] is a subset of ImageNet containing
64×64 dimensional images, with 200 classes and 500 im-
ages per class in the training set, and 50 images per class in
the validation set. Following the setting in [8], we use 50
samples per class (a total of 10,000 samples) from the train-
ing set as a validation set and the original validation set as a
test set. The batch size is set to 64. We train for 100 epochs



Table 1. ECE for different methods with pre- and post-temperature scaling. Optimal T is indicated in brackets.

Dataset Model
CE LS FL FLSD Ours

PreT PosT PreT PosT PreT PosT PreT PosT PreT PosT

Tiny-ImageNet
R-50 3.73 1.86 (1.1) 3.17 1.79 (0.9) 2.96 1.74 (0.9) 2.91 1.74 (0.9) 1.64 1.64 (1.0)
R-101 4.97 2.01 (1.2) 2.20 2.20 (1) 2.55 2.22 (0.9) 4.91 1.64 (0.9) 1.62 1.62 (1.0)

CIFAR-10
R-50 5.85 2.34 (3.9) 2.79 1.75 (0.9) 3.90 1.34 (0.7) 3.84 1.30 (0.7) 1.16 1.16 (1.0)
R-101 5.74 2.51 (3.9) 3.56 2.71 (0.9) 4.60 1.24 (1.4) 4.58 1.21 (1.9) 1.38 1.13 (0.9)

CUB-200-2011 R-101 6.75 2.00 (1.2) 5.16 3.05 (0.9) 8.41 2.45 (0.8) 8.54 3.61 (3.8) 2.78 1.72 (1.2)

20 News GPCN 22.75 3.01 (3.1) 8.07 3.69 (1.2) 10.80 3.33 (1.4) 10.87 4.10 (1.4) 5.40 2.09 (1.1)

with a learning rate of 0.1 for the first 40 epochs, of 0.01 for
the next 20 epochs and of 0.001 for the last 40 epochs.
CUB-200-2011 [10] is the most popular fine-grained
benchmarking dataset. As an extended version of the CUB-
200 dataset, with roughly double the number of images
per class and new part location annotations, it consists of
5, 994 training and 5, 794 test images, belonging to 200 bird
species. We augment the images during training, i.e., we re-
size the images to 256×256 and then randomly crop patches
of 224× 224 from the scaled images or their horizontal flip
as inputs. We initialize the model by pre-trained weights
on ImageNet and then train on this dataset for 200 epochs.
The batch size is set to 16 and SGD optimizer is used with a
momentum of 0.9. The learning rate is initialized as 0.1 and
decayed by a factor of 0.1 every 80 epochs. Note that, for
margin m, we used the optimal m found on the validation
set of Tiny-ImageNet (we did not use a validation set for
CUB-200-2011).
PASCAL VOC 2012 [3] semantic segmentation bench-
mark contains 20 foreground object classes and one back-
ground class. The data is split into 1, 464 images for train-
ing, 1, 449 for validation and 1, 456 for testing. Note that
the calibration performance on test set is unavailable, as the
ground-truth on test set is not publicly released. Therefore,
we only report the performances on validation set by us-
ing the best hyper-parameters found on the Tiny-ImageNet
classification benchmark for all the methods, without any
further tuning on the segmentation validation set. During
training, we randomly crop the images to a 512 resolution,
and apply other augmentations such as random horizontal
flip, random brightness changes or contrast transformation.
To train the segmentation model, we employ the popular
public library1, where the encoder is initialized with the
weights pre-trained on ImageNet and the decoder is trained
from scratch. The batch size is set to 8, and the momentum
of the SGD optimizer to 0.9. The learning rate is initialized
as 0.01, and decayed by a factor of 0.1 every 40 epochs.
Finally, the network is trained for 100 epochs.
20 Newsgroups [6] is a popular text classification bench-
mark, containing 20,000 news articles, which are cate-

1https://github.com/qubvel/segmentation_models.
pytorch

gorised evenly into 20 different groups based on their con-
tent. While some of the groups are significantly related (e.g.
rec.motorcycles and rec.autos), other groups are completely
unrelated (e.g. sci.space and misc.med). We use the stan-
dard train/validation/test split containing 15,098/900/3,999
documents, respectively. To train the Global Pooling Con-
volutional Network (GPCN) [7], we use Glove word em-
beddings [9]. Adam is used as optimizer with an initial
learning rate of 0.001, and beta values equal to 0.9 and
0.999. The training is performed during 100 epochs, with
a learning-rate decay by a factor of 0.1 after the first 50
epochs.

C. Ablation study on the balancing weight

We now investigate the impact of the balancing weight
λ in our method, and compare it to the effect of α in Label
Smoothing (LS), whose results are depicted in Figure 1. In
particular, we show the evolution of calibration and classi-
fication metrics on Tiny-ImageNet validation and test sets.
One may observe that, unlike LS, our method with margin
is more robust with respect to the balancing weight in both
subsets. Furthermore, the high similarity in the ECE curves
of LS and Ours (m = 0) support our theoretical connec-
tions stating that LS approximates a particular case of the
proposed loss when the margin is equal to 0.

D. Results with post temperature scaling

In Table 1, we compare with the method of applying
post temperature scaling (PosT) [4] on the outputs of the
CE-trained model. As this technique is orthogonal to the
learning objectives, we also include the results when apply-
ing this post-processing to the proposed method. We can
see that the PreT scores obtained by our method outperform
the PosT results from CE across all the cases. Furthermore,
our method with PosT also achieves the best performance
across the datasets and backbones. It is worth noting that
the proposed method has optimal temperature values very
close to 1 (see Table 1), indicating that our models are al-
ready well calibrated. Note that the results of post-hoc scal-
ing might be highly sensitive to the validation sets and data
characteristics.
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Figure 1. Evaluating the effect of the balancing weight. We present the variation of both ECE and Accuracy on the Tiny-ImageNet
validation set (left) and on Tiny-ImageNet test set (right) using different balancing weight values, i.e., λ in our method and α in LS. The
network used in this study is ResNet-50.
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Figure 2. Calibration visualizations of ResNet-50 on Tiny-ImageNet. Reliability diagrams is computed with 25 bins. The zoom-in
figures for part of the diagrams are also included, clearly showing the differences.

E. Results with Vision Transformers (ViT)

Table 2. Results with Vision Transformer (ViT) model.

Dataset LS FL FLSD Ours
Acc ECE Acc ECE Acc ECE Acc ECE

CIFAR-10 98.57 1.39 98.49 1.20 98.55 1.13 98.57 0.39
Tiny-ImageNet 90.50 2.37 90.39 4.51 90.47 4.25 90.65 1.26

The recent study in [11] suggests that newer models,
such as vision transformers (ViT) [2], are better calibrated
than older models, such as convolutional neural networks.
Inspired by these findings, we further evaluate the perfor-
mance of the proposed method with ViT, whose results are
presented in Table 2. In particular, we include the results

obtained with a ViT on both CIFAR-10 and Tiny-ImageNet,
demonstrating a similar trend, i.e., the proposed approach
outperforms other calibration losses. This consolidates the
message of this paper and further demonstrates the general-
izability of the proposed loss.

F. Reliability diagram.
We further investigate the calibration behaviour of the

proposed model with reliability diagrams, whose results for
Tiny-ImageNet with ResNet50 are shown in Figure 2. What
we expect from a perfectly calibrated model is that its relia-
bility diagram matches the dashed red line, where the output
likelihood predicts perfectly the model accuracy. We first
observe that the model trained with the standard cross en-
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Figure 3. Additional visual results on semantic segmentation. We present additional examples from the qualitative segmentation results
on the PASCAL VOC 2012 validation set, showing the superiority by our method, in terms of calibration performance. In the left, we give
the original image with ground-truth (GT) mask, then we present the confidence map (a) and the reliability diagram (b) with the ECE
(%) score for each method. The value of confidence map represent the predicted confidence, i.e., the element of the soft-max probability
for the winner class. It is noted that deeper color denotes higher confidence in the map, as shown in the legend at the upper right corner.

tropy (first plot) is overconfident, as its accuracy is mostly
below the confidence values. Both state-of-the-art methods
(second and third plots) reverse this trend, and present re-
liability diagrams closer to the dashed line, which indicates
that models trained with these losses are actually better cal-
ibrated. Even though both improve the calibration perfor-
mance, an interesting observation is that the range accuracy
vs confidence where they are better calibrated is indeed the
opposite (LS provides better estimates for higher probabil-
ities, whereas FL predictions are better calibrated in a low
regime, close to 0). Last, we can observe that the reliabil-
ity diagram slope provided by our method is much closer to
a slope of 1, suggesting that the model is better calibrated.
This observation is supported by the quantitative results re-

ported in Section 5.1 of the main text.

G. Additional visual results on segmentation

In Figure 3, we present additional qualitative examples
from the VOC segmentation model. As illustrated by the
reliability diagrams (b) for different methods, our method
achieves the best calibration performance. Regarding the
confidence maps (a), the results from the proposed model
are also consistent with the fact that uncertainty occurs
mainly on the boundary while confidence is higher within
and outside the segmentation regions. Note that all the
trends are consistent with the examples shown in Figure 3
of the main text.
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