Towards Efficient and Scalable Sharpness-Aware Minimization

Supplementary Material

A. Appendix
A.1. LayerSAM & LookLayerSAM

Algorithm 2 Layer-wise SAM (LayerSAM)

Input: $x \in \mathbb{R}^d$, learning rate η_t, update frequency k.

for $t \leftarrow 1$ to T
do
Sample minibatch $B = \{(x_i, y_i), \ldots, (x_B, y_B)\}$ from X.
Compute gradient $g = \nabla_w L_B(w)$ on minibatch B.
Compute $\epsilon^{(t)} = \rho \frac{||g^{(t)}||}{||g||} \cdot \nabla_w L_S(w)/||\nabla_w L_S(w)||$.
Compute gradient approximation for the SAM objective: $g_s = \nabla_w L_B(w)|_{w+\epsilon}$.
Update weights: $w_{t+1} = w_t - \eta_t \cdot g_s$
end for

Algorithm 3 Look-LayerSAM

Input: $x \in \mathbb{R}^d$, learning rate η_t, update frequency k.

for $t \leftarrow 1$ to T
do
Sample minibatch $B = \{(x_i, y_i), \ldots, (x_B, y_B)\}$ from X.
Compute gradient $g = \nabla_w L_B(w)$ on minibatch B.
if $t \% k = 0$ then
Compute $\epsilon^{(t)} = \rho \frac{||g^{(t)}||}{||g||} \cdot \nabla_w L_S(w)/||\nabla_w L_S(w)||$.
Compute SAM gradient: $g_s = \nabla_w L_B(w)|_{w+\epsilon}$.
else
$g_s = g + \alpha \cdot \frac{||g||}{||g||} \cdot g_v$.
end if
Update weights: $w_{t+1} = w_t - \eta_t \cdot g_s$
end for

A.2. Parameter Settings

In this section, we will introduce the architectures of ViTs in this paper (Table 10). Next, we provide the hyperparameters in Table 8 for ViT training, including learning rate, warmup, optimizer, gradient clipping, epoch, etc. In addition, Table 9 gives us the parameter settings of ViT for large-batch training in this paper.

A.3. Generalization bound

We firstly introduce Theorem 1 regarding generalization bound based on sharpness of LookSAM and then give a proof for it. Note that a similar bound was also established in the original SAM paper [15].

Theorem 1. With probability $1 - \delta$ over the choice the training set $S \sim D$, we have

$$
L_D(w) \leq \max_{||\epsilon||_p \leq \rho} \mathcal{L}_S(w + \epsilon') + \\
\frac{k \log(1 + ||w||^2 p^2 + \sqrt{\log(n)/k})^2 + 4 \log \frac{2}{\delta} + O(1)}{n - 1}
$$

wheren $n = |S|$ and $\rho^2 = \rho^2 + \rho_0^2$.

Proof. We start by illustrating the PAC-Bayesian Generalization Bound theorem, which gives a bound on the generalization error of any posterior distribution Q on parameters that can be achieved using a selected prior distribution P over parameters training with data set S. Let $KL(Q||P)$ denote the KL divergence between two Bernoulli distributions Q and P, we have:

$$
\mathbb{E}_{w \sim L}[L_D(w)] \leq \mathbb{E}_{w \sim L}[L_S(w)] + \sqrt{KL(Q||P) + \log \frac{2}{\delta}}
$$

In order to accelerate the training process, LookSAM calculate the SAM gradient only at every k step and try to reuse the projected components to imitate the weight perturbations introduced from SAM procedure in the subsequent steps. We use ϵ^0 to indicate the difference between our imitated weight perturbation, ϵ', from LookSAM and the real weight perturbation, ϵ, from SAM. As the optimization is in fact regarding the distribution of ϵ', we assume that $L_D(w) \leq \mathbb{E}_{\epsilon' \sim \mathcal{N}(0, \sigma')^T}[L_D(w + \epsilon')]$, which indicates adding Gaussian perturbation should not decrease the test error[13]. Following [13], the generalization bound can be written as follows:

$$
\mathbb{E}_{\epsilon' \sim \mathcal{N}(0, \sigma')^T}[L_D(w + \epsilon')] \leq \mathbb{E}_{\epsilon' \sim \mathcal{N}(0, \sigma')^T}[L_S(w + \epsilon')] + \\
\sqrt{\frac{1}{k} k \log(1 + \frac{||w||^2}{\kappa^2}) + \frac{1}{n} + \log \frac{2}{\delta} + 2 \log(6n + 3k)},
$$

where $\epsilon' = \epsilon + \epsilon^0$

In Equation (10), we assume that ϵ_i and ϵ_i^0 are independent normal variables with mean 0, and corresponding variance σ and σ_0 respectively. Let $\{\epsilon'_i\}$, where $\epsilon'_i = \epsilon_i + \epsilon^0_i$,
be the independent normal variable with mean 0 and variance $\sigma^2 = \sigma^2 + \sigma_0^2$. In particular, at the time when LookSAM can perfectly imitate the SAM procedure by reusing the projected gradient, σ_0^2 becomes zero and σ^2 equals to σ^2. As $||e'||^2$ has chi-square distribution in this case and based on concentration inequality from Lemma 1 in [27], we obtain the following for any positive x:

$$P(||\epsilon + \epsilon_0||^2) \leq \sqrt{k n}$$

Let $x = \ln \sqrt{n}$, then we have that

$$P(||\epsilon + \epsilon_0||^2) \leq \sqrt{k n}$$

With probability of $(1 - \frac{1}{\sqrt{n}})$, we have,
Table 10. Architectures of ViTs

<table>
<thead>
<tr>
<th>Model</th>
<th>Params</th>
<th>Patch Resolution</th>
<th>Sequence Length</th>
<th>Hidden Size</th>
<th>Heads</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ViT-B-16</td>
<td>87M</td>
<td>16 × 16</td>
<td>196</td>
<td>768</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ViT-B-32</td>
<td>88M</td>
<td>32 × 32</td>
<td>49</td>
<td>768</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ViT-S-16</td>
<td>22M</td>
<td>16 × 16</td>
<td>196</td>
<td>384</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>ViT-S-32</td>
<td>23M</td>
<td>32 × 32</td>
<td>49</td>
<td>384</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

\[
\left\| \epsilon' \right\|^2 = \left| \epsilon + \epsilon_0 \right|^2 \\
\leq (\sigma^2 + \sigma_0^2)k + 2\sqrt{k \ln n + 2 \ln n} \\
\leq (\sigma^2 + \sigma_0^2)k(1 + \sqrt{\frac{\ln n}{k}})^2 \\
\leq \rho^2 + \rho_0^2,
\]

where \(\rho_0^2 = \sigma_0^2 k (1 + \sqrt{\frac{\ln n}{k}})^2 \).

After substituting the value for \(\sigma' \) back to Equation (10), we can generate the following bounds:

\[
\mathcal{L}_D(w) \leq (1 - \frac{1}{\sqrt{n}}) \max_{||\epsilon'||_{p=\rho'}} \mathcal{L}_S(w + \epsilon') + \frac{1}{\sqrt{n}} \\
+ \frac{k \log (1 + ||w||_2^2 (1 + \sqrt{\frac{\log(n)}{k}})^2 + \log \frac{\rho^2}{\rho^2} + 2 \log(6n + 3k))}{n - 1} \\
\leq \max_{||\epsilon'||_{p=\rho'}} \mathcal{L}_S(w + \epsilon') \\
+ \frac{k \log (1 + ||w||_2^2 (1 + \sqrt{\frac{\log(n)}{k}})^2 + 4 \log \frac{\rho^2}{\rho^2} + 8 \log(6n + 3k))}{n - 1}
\]

where \(\rho^2 = \rho^2 + \rho_0^2 \).