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1. Evaluation Metrics
This section introduces the evaluation metrics employed

in the experiments. Below, we first introduce the metrics we
formulated/extended from the existing ones for the evalua-
tions, and then introduce other metrics from Text2Shape [3].

• PS and FPD
Point Score (PS) and Fréchet Point Distance (FPD)
measure shape diversity and quality.

Existing works [10, 12] often utilize the Fréchet Point
Distance (FPD) to evaluate the quality of the generated
3D shapes. However, such metric cannot account for
color, which is one of the important characteristics in
our results that is not present in the previous works. To
jointly evaluate the shape and color in the generated
results, we formulate PS and extend FPD for shape and
color evaluations based on Inception Score (IS) [13]
and Fréchet Inception Distance (FID) [7].

PS measures the KL-divergence between the condi-
tional probabilities of the generated shapes and their
marginal probabilities. On the other hand, FPD mea-
sures the Wasserstein distance between the distribution
of the generated shapes and that of the real samples.
The mentioned probabilities are inferred from a pre-
trained classification network (e.g., Inception v3 [13]
on ImageNet for image generation). In our case, PS
and FPD are built upon a newly-trained PointNet [11],
since no existing 3D classification network can simulta-
neously consider both shape and color as far as we know.
Specifically, we train a classification-based PointNet on
ScanObjectNN [14] for 200 epochs, with a validation
classification accuracy of 84.85%.

• IoU
Intersection over Union (IoU) measures the similarity
to the ground truth. We evaluate the IoU between the
generated shape and ground truth, by measuring the
similarity of the occupancy between them.

• R-precision
We adopt R-precision [15] to measure the consistency

between the generated shape S and input text T. Specif-
ically, we extract shape and text features using E and
B, respectively, then evaluate R-Precision three times
with different random seeds to reduce the randomness.

• Metrics in Text2Shape [3]

Chen et al. [3] adopt four metrics, including IoU, EMD,
IS, and Acc (Err=1-Acc), for evaluating their results.
IoU and EMD measure the shape and color similarity
between the generated shape and ground truth, respec-
tively. IS measures the diversity and quality of the
generated shapes, and Err (Acc) measures the quality.
Please refer to [3] for the details. For a pair comparison,
we train a classification model using the official code
released by the author of [3] to evaluate our IS and Acc.

2. Details of the Baselines
2.1. Text-Guided Shape Generation

We create the following baselines to evaluate the key mod-
ules of our text-guided shape generation framework, includ-
ing the auto-encoder (AE), decoupled shape-color decoder
(DSCD), WLST module (WLST), and cyclic loss (CL).

(i) “Without AE.” In this setting, the network is composed
of text encoder B and decoder D but without shape
encoder E. It is optimized to regress the the occupancy
and color values of the target shape I with an L2 loss. It
serves as our preliminary baseline for text-guided shape
generation, where B maps the text T to a latent space
and D reconstructs the shape and color.

(ii) “+AE.” The network is composed of the auto-encoder
E, Dshare, and text encoder B. E encodes the input
shape I as a joint shape-color feature fshare and D
reconstructs the shape and color of I . B extracts the
text feature f̄share and minimizes the mean squared
difference between f̄share and fshare. It serves as a
baseline to directly adopt the auto-encoder-based ap-
proach [4] to our task, as introduced in Section 1 of the
main paper, so this baseline demonstrates the necessity
of the auto-encoder in our approach.



(iii) “Further +DSCD.” In this setting, we replace the shared
decoder Dshare with a pair of decoupled shape-color
decoders D = {Ds, Dc} and replace shared features
fshare and f̂share in (ii) with a pair of decoupled fea-
tures f = {fs, fc} and f̂ = {f̂s, f̂c}, respectively. This
baseline manifests the effectiveness of the decoupled
shape-color decoder (DSCD) in our framework.

(iv) “Further +WLST.” Based on (iii), the spatial-aware
decoder D′ with the WLST is adopted for text-guided
shape generation in place of D. This baseline manifests
the effectiveness of WLST.

(v) “Further +CL” (our full model). Model (iv) is trained
with an additional cyclic loss (which is Eq.(5) in the
main paper), whereas Model (v) is our full model. Com-
paring between model (iv) and model (v) verifies the
applicability of the cyclic loss.

2.2. Diversified Generation

To evaluate the core modules for diversified shape gen-
eration, We compare our Shape IMLE with two other ap-
proaches: (i) Latent GAN and (ii) fully-connected IMLE (FC
IMLE). Besides, we evaluate the performance gain of our
proposed WLST and cyclic loss (CL) for diversified shape
generation. For each baseline, we generate three different
samples for each text with random noises z1 to z3.

(i) “Latent-GAN.” We adopt Latent-GAN [1, 2] condi-
tioned on the input text to generate diversified results.
We adopt our style-based latent shape-IMLE generator
G (Figure 5 in the main paper) as generator and a small
network with three fully-connected layers as discrimi-
nator Dlatent. We train the generator and discriminator
iteratively using adversarial training with all the other
modules frozen.

(ii) “FC IMLE.” In this setting, we introduce the IMLE
framework for diversified generation. As shown in
Figure 1, the IMLE generator Gsimple is composed of
six fully-connected layers that take f̄ ⊕ z as input. This
baseline aims to show the superiority of IMLE.

(iii) “Shape IMLE.” In place of FC-IMLE in (ii), we adopt
the style-based shape-IMLE generator G shown in Fig-
ure 5 in the main paper. This baseline manifests the
effectiveness of our shape-IMLE generator G.

(iv) “+WLST” and “+CL.” Similar to “+WLST” and “+CL”
in Section 2.1, we again evaluate their capability on
improving the diversified generation.
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Figure 1. The FC generator architecture in FC IMLE.

A wood square 
table with four 
legs. It is 
painted brown.

Modern, brown 
color, square 
shape, wooden 
table with a 
curve at bottom.

The object is grey 
in color. It is 
rectangular and flat 
in shape with four 
legs supporting it. 
Usual material is 
wood.
.

Chair with wave 
back. Seat is 
light grey and 
legs and
armrests are 
curved wood.

(a) (b) (a) (b)

(a) (b) (a) (b)

A round wooden 
coffee table with 
three legs and a 
raised edge 
around the table 
top.

(a) (b) (a) (b)

This table for 
constructing table 
color has brown, 
made from wooden 
structure, it appears 
look practical 
appliances wooden 
frame, shape has 
rectangle,

Figure 2. Additional text-guided generation results compared with
Text2Shape [3].
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Figure 3. Additional text-guided generation results compared
with [8].

3. Results of Text-Guided Shape Generation

3.1. Comparison with Existing Works

In this section, we show more results on comparing our
method with [3] and [8]. As shown in Figure 2, our approach
is able to generate shapes with higher fidelity compared with
[3]. Also, our results are more consistent to the input texts.
As shown in Figure 2 (e) on the bottom left of the figure, our
approach is able to create a folding chair following the text
description, where [3] can only output a regular chair.

The most recent work [8] takes only pre-defined semantic
labels as inputs, unlike our approach, which can take natural
language as inputs. As shown in Figure 3, our approach can



This is a round red chair 
with black legs. 

An office chair with swivel 
wheels and arm rests.

A yellow colored 
cushined high back single 
seater sofa chair with arm 
rest.

It is a moulded square cup 
like chair. It is monolitic in 
construction. it is gray in 
color.

A small, circular table with 
glass table top.

It is orange color, square in 
shape with four legs attached 
to it, material used is metal 
and physical appearance looks 
like simple armless iron chair.

Figure 4. Our text-guided shape generation results.

generate more diversified shapes that better match the input
text description (“square shape, square view” in Figure 3 (a1,
a2)), compared with [8].

3.2. Additional Generation Results

Further, we show more text-guided shape generation re-
sults in Figures 4. These results again manifest the superi-
ority of our approach on diversity, fidelity, and text-shape
consistency, demonstrating the capability of our method over
the previous ones.

4. Text-Guided Shape Manipulation

4.1. Color Manipulation Framework

In this section, we introduce our framework for text-
guided color manipulation with shape unchanged. As shown
in Figure 5, we feed shape feature f̄1s (extracted from T1)
and color feature f̄2c (extracted from T2) to G3 to predict
the manipulated feature ˆf1s, f2c, then feed it to D′ to pro-
duce the edited shape Ṡ. We then extract manipulated feature
ḟ = {ḟs, ḟc} from Ṡ using E and use the two-way cyclic
loss, i.e., Lcyc s to encourage shape consistency (ḟs and f̂1s)
and Lcyc c to encourage color consistency (ḟc and f̂2c).

Similar to the shape manipulation framework shown in
the main paper, we train our color manipulation framework

using the following loss:

Lc
mani = (||ḟs − f̂1s||22 + ||ḟc − f̂2c||22)1(IoU(I1, I2) > t)

+ LG1
+ LG2

,
(1)

where the terms have the same definition as Eq.(8) in the
main paper.

4.2. Comparison with the Existing Work

In this section, we compare our method with [3] on shape
manipulation capability. As shown in Figure 6, inserting or
editing words related to the color attribute leads to undesir-
able changes in the other attributes, as shown in the results
produced by [3], e.g., the shape of the chair back and the
table leg, whereas our approach is able to better preserve the
shapes (geometries and structures).

4.3. Ablation Studies

In this section, we evaluate the different strategies for text-
guided manipulation quantitatively. To measure the quality
of the manipulated shapes, We adopt PS and FPD as the eval-
uate metrics. To further evaluate the consistency before and
after the manipulation, we calculate R-Precision1 based on
ḟ (feature from the manipulated shape) and f̂1 (feature from
the original text), and assess R-Precision2 based on ḟ (fea-
ture from the manipulated shape) and E(D′(f̂1)) (feature
from the generated shape by the original text). We build a
small dataset containing 50 pairs of original and manipulated
texts for the evaluation.

(i) Baseline 1. As shown in Figure 7(b) of the main pa-
per, we directly feed the feature from the edited text
f̂2 = {f̂2s, f̂2c} to our generation framework. It is the
primitive baseline for manipulation because it adopts
no mechanism for consistency preserving, but it serves
as the upper bound of the shape manipulation quality,
since it directly adopts our generation framework (Fig-
ure 2 in the main paper) to produce the result without
any constraints on the manipulation consistency.

(ii) Baseline 2. As shown in Figure 7(c) of the main paper,
the shape is generated by a mixture of f̂1 and f̂2. Specif-
ically, for the shape manipulation, we feed f̂2s ⊕ f̂1c to
D′; and for the color manipulation, we use f̂1s ⊕ f̂2c.

(iii) Baseline 3. As shown in Figure 7(d) of the main paper,
we feed a mixture of f̄1 and f̄2 to G to boost the shape-
color alignment. For the shape manipulation, we feed
f̄2s ⊕ f̄1c to G to derive ˆf2s, f1c; and for the color
manipulation, we predict ˆf1s, f2c from f̂1s ⊕ f̂2c with
G.

(iv) Our full model (Ours). Built upon (iii), we further
incorporate the two-way cyclic loss shown in Eq.(8) of
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Figure 5. Overview of our text-guided color manipulation framework (with shape unchanged). Given two pieces of text T1,T2, shape
IMLE G1 and G2 use the same random noise zi for shape generation. G3 takes {f̄1s, f̄2c} and zi as input to generate shape Ṡ with feature
{ḟs, ḟc} (encoded by E), such that ḟs and ḟc should be similar to f̂1s and f̂2c, respectively. To this end, we propose a two-way cyclic loss to
encourage the shape consistency between Ṡ and T1, and the color consistency between Ṡ and T2. G1, G2, G3 share the same weights.
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Figure 6. Text-guided manipulation results on comparing our
method with Text2Shape [3].

the main paper for shape manipulation, and Eq. (1) in
this supplementary document for color manipulation.

“Baseline 1” generates a new shape using the edited text
without considering what the original shape is. As shown in
Table 1, despite of the best diversity and quality it achieves,
the lowest R-Precisions indicate the unsatisfying consistency
before and after the manipulation (see Figure 7 (b) in the
main paper).

On the other hand, “Baseline 2” and “Baseline 3” attain
better consistency at the expense of the generation quality,
and our manipulation framework with the two-way cyclic
loss is able to achieve the best consistency before and after
the manipulation, while having better generation quality
compared with both “Baseline 2” and “Baseline 3,” even
being close to “Baseline 1.”

5. Alternative Training Strategy
In this section, we discuss an optional training strategy.

Specifically, we jointly train the shape auto-encoder and
text encoder E,D′ and B end-to-end, instead of following
the training strategy presented in the main paper that first

Table 1. Ablation studies on text-guided manipulation.

Method PS (↑) FPD (↓) R-Precision1 (↑) R-Precision2 (↑)

Baseline 1 2.80 ± 3.03 31.70 36.00 ± 2.83 48.67 ± 0.94
Baseline 2 2.73 ± 0.39 33.77 43.33 ± 0.94 52.00 ± 3.26
Baseline 3 2.75 ± 0.48 35.74 42.66 ± 3.77 56.67 ± 2.49

Ours 2.76 ± 0.53 32.03 58.00 ± 2.82 67.33 ± 1.89
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type of metal.

(a). Shape attention map (b). Color attention map

Figure 7. Attention map of the end-to-end training strategy.

trains E,D, and then jointly trains E,D′, B. This strategy
includes fewer training steps, but needs much more train-
ing time because B continuously optimized in the whole
training process. This training strategy achieves comparable
performance as presented in the main paper, and can gener-
ate attention maps that are more consistent with the semantic
meaningful shape parts as shown in Figure 7.

6. Limitations and Future Work
Our current approach still has some limitations. First,

text-guided shape generation is a very challenging task as
discussed in Section 2 of the main paper. For example, some
attributes, such as “ten legs” in Figure 8 (a), are extremely
challenging to generate. Our framework fails to generate
a shape that faithfully follows such description. Second,
shapes with long, thin, and fine structures may get distorted
or become noisy, as shown in Figure 8 (b, c). To address this
issue, we plan to explore more recent 3D implicit representa-
tions [5, 6, 9]. Also, the manipulation performance is limited
by the inherent bias of the dataset. If we add an armrest to
the chair in Figure 8 (d), the manipulated chair will have
become wider than the original one. Such a result is par-



Clear, glass table 
with a wooden base 
that is split into ten 
legs from the center.

        (a) The challenging description

(d) Fail to manipulate due to the dataset bias

A swivel chair with 
Square seat and four
Legs with wheels.

(b) Incomplete long and thin structures

(c) Incomplete complex structure

A stylish brown 
Colored chair, with 
blueish colored 
seating.

A brown colored 
wooden chair 
without arm rest

with

(e) Failure cases in diversified generation

A brown and gray 
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Figure 8. Illustrating the limitations of our current approach.

tially due to the dataset bias, since armed chairs are typically
wider (like sofa) than those without armrests in the dataset.
To resolve it, the manipulation process requires a topological
understanding of the shapes. In addition, our metrics have
some limitations. On the one hand, IoU may not be a good
metric for text-to-shape generation task, because a slight dif-
ference in height/position between the generated shapes and
GT shape can cause a low IoU; particularly, this is beyond
the representative ability of a small piece of text. On the
other hand, PS and FPD cannot fully reflect the generative
quality, because these two metrics are based on the ScanOb-
jectNN dataset [14], which has a large domain gap from our
training dataset ShapeNet. In other words, better PS and
FPD simply indicate that the generated shapes are more sim-
ilar to the ScanObjectNN shapes, not necessarily meaning
better quality. Also, there is a trade-off between the diversity
and fidelity in our diversified generation. When stronger
noise added to encourage the diversity, the quality of some
generations cannot be ensured, and some are inconsistent
with the text description as shown in Figure 8 (e). It gets
more serious when the text is long and contains descriptions
on shape details. Last, our approach needs paired text-shape
data for training, so we temporarily only explore shapes of
table and chair, since the largest existing dataset [3] only
provides samples of these two categories. In the future, we
will plan to explore zero-shot text-guided shape generation
to extend the applicability of this work.
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