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The Appendix contains following sections:
Appendix A is the proof of the first order approximation

of gradient reconcilement.
Appendix B is the related works on domain adaptation

under noisy source scenarios.
Appendix C is the full algorithm of the proposed NLTE.
Appendix D is additional experimental results and anal-

ysis of NLTE.
Appendix E is more qualitative results.
Appendix F is a discussion of the broader impact and

limitations of the proposed task and method.

A. Proof of the First-order Approximation of
Gradient Reconcilement

Theorem 1. For a domain adaptive object detector trained
with noisy source annotations with a small learning rate α,
the maximizing of the inner products of gradients provided
by different samples

arg max
ϕf ,ϕdet,ϕdis

(
Gs

cln ·Gs
cpt +Gs

cln ·Gt +Gs
cpt ·Gt

)
, (1)

can be approximated as the first-order meta-update between
gradients over iterations:

(ϕf , ϕdet)← (ϕf , ϕdet) + λ(∆ϕ̃f ,∆ϕ̃det). (2)

Proof. Without loss of generality, we use the situation of 2
iterations as the interval of meta updating. We first make the
following definitions: Gradient at i respecting to the SGD
updated model ϕ̃ after i iterations:

G̃i = Ex∈bi

∂L
[
(xs,t, ys) ; ϕ̃

]
∂ϕ̃

. (3)

Gradient respect to the model at the initial time ϕ:

Gi = Ex∈bi

∂L [(xs,t, ys) ;ϕ]

∂ϕ
, (4)
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here b1 represents the sampled mini-batch within the first
step, which correspond to a linear combination of the mini-
batches bs

cln, bs
cpt, and bt sampled from Ds

cln, Ds
cpt, and

Dt, respectively.1 Note that during training, same number
of source and target images are fed into the model ϕ, the
summation of source samples and target samples are equiv-
alent, i.e., bs

cln + bs
cpt = bt. However, as Ds

cln and Ds
cpt

are implicitly drawn from different distributions P s
XsY s and

P s
XsỸ s , the ratio of bs

cln and bs
cpt are stochastic over itera-

tions. Then, the Hessian at the initial point is:

Hi = Ex∈bi

∂2L [(xs,t, ys) ;ϕ]

∂ϕ2
, (5)

Following [5, 8], the second-order Taylor approximation of
Gi is:

G̃i = L′
i(ϕ̃)

= L′
i(ϕ) + L′′

i (ϕ)
(
ϕ̃− ϕ1

)
+O

(
α2

)
= Gi +Hi(ϕ̃− ϕ) +O(α2),

(6)

by substituting ϕ̃−ϕ = −α
∑i−1

j=1 Gj and G̃j = Gj+O(α)
into the above equation, we have:

G̃i = Gi − αHi

i−1∑
j=1

Gj +O
(
α2

)
. (7)

For the case where 2 iteration intervals:

G̃2 = G2 − αH2G1 +O
(
α2

)
. (8)

Regarding the gradient in Eq. (2) and substitute Eq. (8) in,
we have:

∆ϕ̃ = ϕ̃− ϕ = α(G̃1 + G̃2)

= α(G1 +G2 − αH2G1 +O
(
α2

)
)

= α(G1 +G2) + α2(H2G1) +O(α3).

(9)

1The mini-batches refer to the samples passed into the multi-class clas-
sifier, which correspond to the pooled RoI features.
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Rewriting the second term:

α2(H2G1) = E1,2 [H2G1]

= E1,2 [H1G2]

=
1

2
(E1,2 [H2G1] + E1,2 [H1G2])

=
1

2
E1,2

[
∂

∂ϕ
(G1 ·G2)

]
.

(10)

The equation can also be extended to k iterations by multi-
plying the equation by k(k−1)

2 . Denoting the first iteration
gradient respect to ϕ as G1, the second iteration gradient
respect to ϕ after 1 iteration as G2, we have:

G1 = Gs
cln,1 +Gs

cpt,1 +Gt
1,

G2 = Gs
cln,2 +Gs

cpt,2 +Gt
2.

(11)

Since only inner products of gradients from different types
of samples instead of iterations are concerned, the iteration
notations can be removed for clearer illustration, i.e., Gs

cln,1

and Gs
cln,2 are both treated as Gs

cln. Thus, according to the
distributive law of vector inner products, the inner product
between G1 and G2 are:

G1 ·G2 = (Gs
cln +Gs

cpt +Gt) · (Gs
cln +Gs

cpt +Gt)

= ∥Gs
cln∥2 + ∥Gs

cpt∥2 + ∥Gt∥2

+Gs
cln ·Gs

cpt +Gs
cln ·Gt +Gs

cpt ·Gt︸ ︷︷ ︸
The Inner Product Term

(12)
Combining Eq. (9), Eq. (10), and Eq. (12), we show that
using the residual of the model after multiple iterations as
meta gradients is an approximation of the inner product of
the gradients provided by same type of samples across iter-
ations and different types of samples.

B. Related Works on Domain Adaptation with
Noisy Annotated Source Dataset

Recently, some works attempted to achieve domain
adaptation under noisy source annotations for the image
classification task [3, 9, 14]. Shu et al. [9] designed a cur-
riculum training strategy to select easy and transferable
samples to jointly address label noise and feature noise.
Han et al. [3] used offline curriculum learning as a more
reliable strategy for selecting clean samples, meanwhile use
proxy distribution search as a novel discrimination criterion.
However, both methods assume the availability of noisy rate
within the source dataset. Zuo et al. [14] designed a model-
agnostic approach based on co-teaching [2], which utilized
the outputs of two symmetrical domain adaptation models
to explore noisy samples. However, the method is based
on the small-loss strategy which may treat hard positives
as noise. Meanwhile, it duplicates domain adaption models
that may cause significantly increase in the storage demand

Algorithm 1 The training procedure of NLTE

1: Input: Noisy source dataset Ds = {xs, ỹs}; Tar-
get dataset Dt = {xt}; Gradient reconcilement pe-
riod κ; Untrained domain adaptive object detector ϕ =
(ϕf , ϕdet, ϕdis)

2: Output: Trained noise-robust domain adaptive object
detector ϕ

3: for iter = 1 to maxiter do
4: Feed xs, xt into ϕ, generate proposals Ps, Pt

Potential Instance Mining:
5: Select eligible proposals P

s
, P

t
with Eq. (1)

Morphable Graph Relation Module:
6: Do intra-domain graph aggregation with Eq. (2)
7: Generate global relation matrix with Eq. (3)-(4)
8: Generate local relation matrix with Eq. (5)
9: Compute Lmgrm

Entropy-Aware Gradient Reconcilement:
10: Feed concatenated proposal features and logits into

entropy-aware discriminator
11: Compute Ldet, Ldis, LEAGR

dis

12: if iter % κ = 0 then
13: Meta update (ϕf , ϕdet) with Eq. (11)
14: end if
15: end for
16: Return Well-trained cross-domain object detector ϕ

and training time. Therefore, these related works could not
be directly adopted to the noisy DAOD setting. To this end,
we proposed NLTE for this challenging yet undeveloped
task, which boosts the robustness of domain adaptive ob-
ject detectors under noisy annotation scenarios effectively.

C. Full Algorithm
Algorithm 1 shows the training procedure of NLTE. The

numbers of equations within the algorithm refer to those in
the main paper.

D. Experiments
D.1. Details of Datasets with Synthetic Noise

For the Noisy Pascal VOC dataset, we manually gener-
ate synthetic noise that can be categorized into two groups:
miss-annotated and class-corrupted. To simulate the man-
ual labeling mistakes, for a dataset with C+1 classes (class
0 refers to background), we randomly select r% instances
and substitute their original class label Ci to another label
Cj , where r% is the noisy rate and i ̸= j. If j = 0, then the
instance is directly removed.

D.2. Adopting Other Noise-robust Learning Ap-
proaches

Besides SCE [11], CP [6], and GCE [12], we also tested
adopting other noise-robust learning approaches into the



Table 1. Results (%) on Pascal VOC & Noisy Pascal VOC → Clipart1k under different noisy rates (NR).
Pascal VOC & Noisy Pascal VOC→ Clipart1k

NR Methods aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP Imprv.

0%
DAF 29.0 45.1 33.3 25.8 28.6 48.0 39.8 12.3 35.3 50.3 22.9 17.4 33.4 33.8 59.2 44.8 20.7 26.0 45.3 49.6 35.0 0.0
+SR 18.2 30.8 28.9 25.1 26.6 42.7 33.3 2.8 30.5 27.4 17.9 11.0 25.6 32.2 48.0 36.4 16.3 18.8 41.0 43.9 27.9 -7.1

+NLTE 39.1 50.3 33.6 34.7 35.0 40.5 44.2 5.9 36.8 45.8 23.1 17.3 31.8 39.5 60.7 45.4 17.9 28.4 49.0 51.3 36.5 +1.5

20%
DAF 34.0 39.1 32.0 27.3 32.2 39.3 38.9 2.9 34.9 44.9 20.6 14.2 30.8 36.6 53.8 43.8 17.6 23.6 42.8 46.1 32.8 0.0
+SR 18.2 30.8 28.9 25.1 26.6 42.7 33.3 2.8 30.5 27.4 17.9 11.0 25.6 32.2 48.0 36.4 16.3 18.8 41.0 43.9 27.9 -4.9

+NLTE 33.1 47.5 35.5 28.2 33.7 53.8 43.8 4.2 34.2 48.4 19.3 14.6 29.7 47.2 57.1 42.5 17.7 27.7 40.0 44.5 35.1 +2.3

40%
DAF 24.5 39.4 29.1 26.9 32.8 46.5 40.0 4.7 36.1 42.0 21.3 10.6 27.8 37.3 52.8 39.7 17.5 26.9 36.0 46.2 31.9 0.0
+SR 15.3 43.3 30.7 15.3 29.8 42.4 32.3 5.0 26.4 41.7 17.2 18.5 26.5 37.8 50.6 42.0 18.0 16.9 38.1 38.5 29.3 -2.6

+NLTE 32.8 45.5 30.8 29.8 35.7 43.2 43.0 6.4 32.7 45.9 19.8 10.8 31.1 43.4 56.4 43.3 19.6 24.8 42.5 43.9 34.1 +2.2

60%
DAF 29.4 33.5 29.7 29.0 27.7 39.5 38.0 2.7 31.9 41.5 19.8 12.9 30.2 37.0 49.7 37.2 12.8 25.5 40.8 44.2 30.6 0.0
+SR 18.7 34.3 29.2 26.8 28.1 37.2 29.6 10.0 22.7 36.4 15.5 9.7 16.7 43.3 52.1 35.2 16.2 18.4 30.2 39.3 27.5 -3.1

+NLTE 33.0 51.9 32.2 31.7 29.9 39.7 43.6 11.0 36.4 40.7 27.0 11.8 30.3 35.3 55.9 42.2 20.8 30.1 34.5 41.2 34.0 +3.4

80%
DAF 28.2 34.0 29.6 20.8 27.7 45.0 34.4 1.4 31.5 34.1 19.9 9.3 26.2 33.3 46.0 37.4 17.5 20.4 30.6 41.9 28.5 0.0
+SR 20.9 36.9 19.8 21.7 26.6 38.8 26.2 4.7 26.5 28.9 16.2 7.3 19.3 49.4 46.0 38.2 15.3 8.6 36.9 31.9 26.0 -2.5

+NLTE 36.0 45.4 33.5 30.3 27.3 40.5 40.6 2.6 28.3 51.7 20.4 9.5 30.8 43.1 56.6 42.1 17.7 23.3 31.2 38.4 32.5 +4.0

Table 2. Results on Noisy Pascal VOC → Watercolor2k under
different noisy rates (NR).

Noisy Pascal VOC→Watercolor2k

NR Methods bcycle bird car cat dog prsn mAP Imprv.

20%

DAF 69.1 36.5 25.8 31.0 16.1 44.9 37.2 0.0
+SCE 62.4 42.6 33.2 32.2 18.5 46.5 39.2 +2.0

+NLTE 73.7 37.1 35.3 28.1 21.2 44.5 40.0 +2.8
+NLTE(SCE) 78.4 39.2 38.5 28.2 27.9 49.3 43.6 +6.4

40%

DAF 68.0 32.9 20.5 19.8 13.6 39.4 32.4 0.0
+SCE 64.5 36.6 37.8 14.1 14.0 42.8 35.0 +2.6

+NLTE 75.7 37.2 32.5 22.6 24.3 43.1 39.2 +6.8
+NLTE(SCE) 55.8 44.3 29.8 29.6 28.3 54.8 40.5 +8.1

DAF [1] framework. APL [4] combined active and passive
loss functions to achieve a balance between under-fitting
and over-fitting. However, replacing the cross-entropy loss
[1] with different types of APL (NCE+RCE, NCE+MAE,
NFL+RCE, NFL+MAE) will cause non-convergence i.e.,
the mAP remains 5%− 10%. A recent work SR [13] stated
that any loss can be made robust to noisy labels by restrict-
ing the network output to the set of permutations over a
fixed vector. However, as shown in Table 1, adopting SR
in DAF [1] leads to performance drop on all settings. We
conjecture that the loss of the detection framework is a sum-
mation of multiple losses, thus restricting the classification
branch with sparse regularization individually may not be
an effective solution.

D.3. Incorporation with Noise-robust Learning Ap-
proaches

Since the proposed NLTE is not aimed at correcting the
noisy annotations but to explore their latent transferabil-
ity for promoting the domain adaptation performance, we
can incorporate it with previous noise-robust learning ap-
proaches, including SCE [11], CP [6], GCE [12], etc. How-
ever, most of them show negligible improvement and only
SCE [11] benefits NLTE on the Noisy Pascal VOC→Wa-
tercolor2k setting. As shown in Table 2, we test the per-
formance of implementing NLTE and SCE in conjunction
on DAF and find it further improves the performance of the

Table 3. Analysis of the gradient reconcilement period κ.

κ 1 2 4 6

mAP 34.8 35.1 34.6 34.1

Table 4. Analysis of the meta update weight λ.

λ 0.01 0.002 0.001 0.0005

mAP 34.3 34.1 35.1 34.5

detector, which may attributing to the bias within the source
domain is rectified to some extent and the difficulty of align-
ing noisy samples with NLTE is alleviated.

D.4. Sensitivity Analysis of the Gradient Reconcile-
ment Period

As illustrated in the main paper and Appendix A, The
gradient reconcilement requires multiple iterations κ. To
study the impact of κ, we conduct experiments on Noisy
Pascal VOC → Clipart1k with noisy rate 20% and display
the results in Table 3. Specially, κ = 1 is the original SGD
training without reconcilement. We show that compared
with the model without reoncilement, κ = 2 shows higher
mAP 35.1, which is because gradients of distinct samples
are encouraged to achieve coherence with gradient recon-
cilement. Therefore, both clean and noisy samples would be
contributive towards learning a domain-invariant object de-
tector. Besides, the performance drops as κ increases. The
possible reason is that the accumulated gradients provided
by noisy samples have dominated the training process, and
harmonizing their directions could affect the clean samples.
Therefore, we set κ = 2 in all experiments.

D.5. Sensitivity Analysis of the Meta Update Weight

To approximate the gradient reconcilement process, we
utilize the first-order meta update for the model. To study
the sensitivity of the weight λ of the weighted combination
of the model before and after κ iterations, different values
of λ are tested on the Noisy Pascal VOC→ Clipart1k with



Figure 1. Visualization of features obtained by different models
in the Noisy Pascal VOC → Clipart1k under 20% noisy rate. The
dots and cross marks refer to source and target samples, and each
color refers to a different class.

noisy rate 20%. As illustrated in Table 4, the model is quite
robust to the hyperparameter, and we set it to 0.001 in all
our experiments.

D.6. Visualization of the Feature Distributions

The t-SNE [10] visualizations of the feature distributions
are presented in Fig. 1. The features are extracted from pro-
posals that correspond different instances and we select four
classes for clearer interpretation. Although DAF [1] and
SCE [11] could align source and target domains, they suf-
fer from miss classification caused by noisy annotations as
their are features are more mixed. In contrast, NLTE shows
better ability in distinguishing different classes meanwhile
preserves the ability of adaptation as different domain sam-
ples are well aligned.

E. Extended Qualitative Results
We provide extended qualitative results on Noisy Pas-

cal VOC → Clipart1k with 20% noisy rate in Fig. 2,
Noisy Pascal VOC → Watercolor2k with 20% noisy rate
in Fig. 3. Compared with other noise-robust learning ap-
proaches, DAF+NLTE can categorize objects in the target
domain more accurately, indicating its robustness towards
noisy source annotations. We also provide qualitative de-
tection results on Cityscapes→ Foggy Cityscapes in Fig. 4,
and display the source only results and the ground truth for
clearer illustration. It is observed that DAF+NLTE consis-
tently outperforms the source only model. It can not only
alleviate false negative instances but also predict the corre-
sponding class labels correctly. This scenario demonstrates
the effectiveness of NLTE in addressing the noisy in natural
scenarios and benefiting domain adaptive object detection.
However, there remain failure detections, which may due
to the large semantic gap between the original label and the
corrupted label, or due to the incapacity of the feature align-
ment between source and target domains.

F. Broader Impact and Limitations
The proposed method detects objects across domains

even under noisy source annotations, which may reduce the
burden of labeling and one may use abundant coarse web-
crawled images to train a domain adaptive object detector.

Meanwhile, our method could also be used for estimating
the bias level of the annotated dataset. However, our work
is restricted to the setting where source and target domain
share the same label space. Thus our future work will also
include the extension to open-set scenarios.
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(a) DAF [1] (b) +SCE [11] (c) +CP [6] (d) +GCE [12] (e) +NLTE (Ours)

Figure 2. Qualitative results with noisy rate 20% on Clipart1k.



(a) DAF [1] (b) +SCE [11] (c) +CP [6] (d) +GCE [12] (e) +NLTE (Ours)

Figure 3. Qualitative results with noisy rate 20% on Watercolor2k.



(a) Source Only [7] (b) DAF+NLTE (Ours) (c) Ground Truth

Figure 4. Qualitative results on Foggy Cityscapes.


