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Table 1. Results of the anchor-free model (FCOS) on VOC.

Models Labeled Unlabeled AP50:95

Supervised FCOS-R50 VOC07 None 41.53

STAC [4] FCOS-R50

VOC07 VOC12
44.47 (+2.94)

Unbiased Teacher [3] FCOS-R50 49.50 (+7.97)

Ours FCOS-R50 56.71 (+15.13)

STAC [4] FCOS-R50

VOC07
VOC12

+

COCO20cls

44.89 (+3.36)

Unbiased Teacher [3] FCOS-R50 51.15 (+9.62)

Ours FCOS-R50 57.91 (+16.38)

1. Additional Results on Anchor-free Detector
COCO-additional. To examine whether the fully-

supervised anchor-free detector (FCOS) can be improved
by using the additional unlabeled images, we also consider
COCO-additional and VOC. We present COCO-additional
in Table 2, and our method can also perform 7.19 mAP
improvement compared to the supervised baseline, 6.42
mAP absolute improvement compared with STAC [4], and
4.64 mAP absolute improvement compared with Unbiased
Teacher [3].

VOC. A similar trend is also found in VOC as presented
in Table 1, where our model achieves 56.71 mAP, which
shows 15.13 mAP improvement over the supervised only
baseline. By leveraging unlabeled COCOcls20 in the train-
ing, our model can further improve and obtain 57.91 mAP,
which is 16.38 mAP higher than the supervised baseline.
These results confirm the effectiveness of our method in im-
proving the fully-supervised object detector with additional
unlabeled images.

2. Effect of margin between localization uncer-
tainties of Teacher and Student

We presented the Listen2Student mechanism, which se-
lects pseudo-labels based on whether the boundary predic-
tions satisfy δt +σ ≤ δs, where δt is the estimated boundary
uncertainty and δs is the estimated boundary uncertainty of
student.

We ablate the margin and examine its sensitivity in Ta-

ble 3. We observe that when the margin is set as σ = 0.0
(i.e., select all instances where the teacher has lower un-
certainty than the student), the model can achieve 22.15
mAP. By further increasing the margin to 0.2, the result
can be improved to 22.73 mAP, since the ratio of instances
correctly reflecting teacher’s prediction is better than the
student’s prediction is higher when the selection condition
becomes stricter. However, when we further increase the
margin to 0.4, the performance drops to 21.91 mAP. This is
because the number of pseudo-labels becomes fewer when
the extremely strict conditions are enforced. We thus use the
margin σ = 0.2 for COCO-standard experiments.

3. Definition of Misleading and Beneficial In-
stances

To better approach the pseudo-labeling method in semi-
supervised object detection, we explicitly differentiate the
unlabeled instances with pseudo-labels into two categories,
beneficial and misleading instances. To learn object detectors
in a semi-supervised manner, the pseudo-labeling method
updates the model θn with both a supervised loss Ls and an
unsupervised loss Lu,

θn+1 =θn + γ
∂
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ŷu
i ∈Ψ+

Lu(xui , ŷ
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)), (3)

where xiu is the i-th unlabeled image in a batch, ŷui is the
corresponding pseudo-label, Ψ+ is the beneficial set, Ψ− is
the misleading set, γ is the learning rate, and λu is the unsu-
pervised loss weight. Both the confidence thresholding and
our Listen2Student aim to remove the misleading gradient,
which is derived from the incorrect pseudo-labels.
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Table 2. Experimental results of the anchor-free model (FCOS-ResNet50) on COCO-additional. Note that 1x represents 90K training
iterations, and Nx represents N×90K training iterations.

Anchor-free detectors on COCO-additional

Supervised (1x) Supervised (3x) CSD (3x) STAC (3x) Unbiased Teacher (3x) Ours (3x) Ours (4x)

AP 50:95 37.10 37.29 36.70 (-0.59) 38.06 (+0.77) 39.84 (+2.55) 44.02(+6.73) 44.48 (+7.19)
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Figure 1. Centerness bias issue in semi-supervised anchor-free detectors. We analyze the detector in terms of its (b) mean average
precision (mAP), (c) averaged scores of pseudo-boxes, and (d) correlation between centerness and classification score (y-axis) and IoU
(colorization) for each predicted boxes. (a) Box score of some anchor-free detectors [7, 10] is derived by multiplying the centerness and the
classification score. (b) By using the box score to select pseudo-labels, the performance of the detector starts to degrade after 50K training
iterations. (c) We observe the box score of pseudo-boxes is dominated by the centerness score, which cannot precisely reflect whether
the predicted boxes are foreground classes. As the predictions of the Teacher model is used as pseudo-labels for the Student model (i.e.,
pseudo-labeling), the high-centerness background instances (points colored in dark blue in (d)) appear more frequently when the detector is
trained longer.

Table 3. Ablation study of varying margin between the localiza-
tion uncertainties of Teacher and Student σ in the case of COCO-
standard 1%. Faster-RCNN is used as the model for all results
below.

σ 0.0 0.1 0.2 0.3 0.4
mAP 22.15 22.27 22.73 22.57 21.91

Table 4. Pseudo-box selection based on classification scores is more
effective than pseudo-box selection based on box score (which
contains centerness score) in COCO-additional. All results are
based on FCOS [7].

Class. score Box score ∆

COCO-additional 44.48 42.50 -1.98

3.1. More on Adaption to Anchor-free Detectors

Further Discussion on Centerness bias issue As pre-
sented in Figure 1b, we notice that selecting the pseudo-
boxes based on box scores performs worse than solely rely-

Table 5. Using center-sampling leads to a worse accuracy in COCO-
additional. All results are based on FCOS [7].

w/o Center-Sampling w/ Center-Sampling ∆

COCO-additional 43.23 42.50 -0.53

Table 6. Ablation study on Listen2student and scale jitter. Note that
we experiment on COCO-standard with 10% supervision. Faster-
RCNN is used as the model for all results below.

Listen2student Scale jitter mAP

- - 30.91

X - 32.18

- X 31.83

X X 33.55

ing on classification scores in the semi-supervised setting,
while FCOS [7] shows using box scores leads to better re-



Table 7. Meanings and values of the hyper-parameters used in FCOS in experiments.

Hyper-parameter Description COCO-standard VOC COCO-additional

τ Class. confidence threshold 0.5 0.5 0.5

λclsu Unsupervised loss weight for classification 3 3 2

λregu Unsupervised loss weight for regression 0.2 0.2 0.2

α EMA rate 0.9999 0.9999 0.9999

bl Batch size for labeled data 8 16 32

bu Batch size for unlabeled data 8 16 32

γ Learning rate 0.01 0.01 0.01

Table 8. Meanings and values of the hyper-parameters used in Faster-RCNN in experiments.

Hyper-parameter Description COCO-standard VOC COCO-additional

δ Confidence threshold 0.7 0.7 0.7

λclsu Unsupervised loss weight for classification 4 2 2

λregu Unsupervised loss weight for regression 1.0 1.0 1.0

α EMA rate 0.9996 0.9996 0.9996

bl Batch size for labeled data 8/32 8 32

bu Batch size for unlabeled data 8/32/40 8 32

γ Learning rate 0.01 0.01 0.01

sults in the fully-supervised setting. We observed that this is
because the box score of some anchor-free detectors [7, 10]
is defined as the multiplication of classification score and
centerness score (see Figure 1a), and the pseudo-boxes se-
lected based on the box score have relatively high centerness
score but low classification scores (see Figure 1c). This
reveals that the box score is dominated by the centerness
score in the pseudo-labeling mechanism. However, with the
limited amount of labels used in the training, the centerness
score is not reliable for reflecting whether a prediction is a
foreground instance since there is no supervision to suppress
the centerness score for background instances in the cen-
terness branch. As a result, these selected high centerness
pseudo-box are likely to be the background instances (see
Figure 1d), and adding these false-positive pseudo-boxes in
the semi-supervised training degrades the effectiveness of
the pseudo-labeling and also aggravates the centerness bias
issue.

Analysis on COCO-additional. We also analyze
whether an object detector also suffers from the centerness
bias issue and unreliable label assignment. We thus follow
the experimental setup in COCO-additional and show the
analysis in Table 4 and 5. The trend is consistent with what
we observed in the COCO-standard (i.e, randomly sample
0.5− 10% as the labeled set).

4. Complete Implementation Details
Network and framework. We build our method upon

the Detectron2 framework [8] (with Apache License). For
the anchor-free experiments, we use the FCOS, with im-

plementation from AdelaiDet [6]. For the anchor-based
experiments, we use the official implementation in Detec-
tron2. For a fair comparison, both FCOS and Faster-RCNN
use the ResNet50 as the feature backbone pretrained on
the ImageNet, which is a common procedure in the prior
works [2–5, 11]

Training Details and Hyper-parameters. Our training
procedure follows the Unbiased Teacher [3], which contains
the burn-in stage (i.e., train an object detector with the avail-
able labeled data) and the mutual learning stage (i.e., addi-
tionally use the pseudo-labels for unlabeled data with teacher-
student mechanism). For the COCO-standard with FCOS,
we train 180k iterations, which includes 10/15/20/25/30k
iterations for 0.5%/1%/2%/5%/10% in the Burn-In stage
and the remaining iterations in the Teacher-Student Mutual
Learning stage. For the COCO-additional, we train 360k it-
erations, which includes 90k iterations in the Burn-Up stage
and the remaining 270k iterations in the Teacher-Student
Mutual Learning stage. For the Faster-RCNN, we follow
the setups in Unbiased Teacher [3]. We summarize the
hyper-parameters for FCOS in Table 7 and Faster-RCNN in
Table 8.

Data augmentation. We follow the data augmentation
used in Unbiased Teacher [3], which uses a random horizon-
tal flip for weak augmentation and randomly adding color
jittering, grayscale, Gaussian blur, and cutout patches [1]
for the strong augmentation. We additionally consider scale
jitter used in SoftTeacher [9] to further improve the perfor-
mance, and we present the effect of scale jitter in Table 6.
Note that Image-level or box-level geometric augmentations,



such as rotation, translation, and Mosaic [11], are not used
in our method.
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