
Supplementary Material

A. Gradient of Dot-Product Attention - Results
We report an extended version of Table 1 in Ta-

ble A2, which includes up to 12 encoder layers (when
available) and report the median of the gradient ratio
|(rXAh(X))X)/(Ah(X)1X)|, more specifically mean
and its standard error of this median across 100 im-
ages. Table A2 shows that gradients tend to flow along
the Ah(X)1X gradient term, in particular when back-
propagating all the way up to the input (as in adversarial
patch optimization). We also find that smaller ratios are
connected to less effective patches, in fact ViT-* models
tend to have large ratios (in particular in later layers) com-
pared to DeiT-*, which matches lower robust accuracies in
general (see Table 3).

B. Effect of Input Mean on Attention Weight
Robustness
As discussed in in Section 4.2, less centered inputs X

(larger absolute value of input mean |µ|) make dot-product
self-attention less robust to patch attacks on the controlled
setting (when input variance is constant). We recap that the
input mean is µ = µ · 1, input standard deviation � = 1,
and WQ = �w · Idk and WK = w · Idk .

We now denote the query mean by µQ = Mean(WQ ·
X) = �wµ and key mean by µK = Mean(WK ·X) = wµ.
We note that the element-wise distance between query and
key mean is |µ(i)

K � µ
(i)
Q | = |wµi + wµi| = 2|w||µ|.

On the other hand, for query standard deviation, we have
�Q = StdDev(WQ · X) = StdDev(�wX) = w1 and
for key standard deviation �

2
K = StdDev(WK · X) =

StdDev(wX) = w1.
As can be seen, increasing |µ| increases the distance be-

tween query and key cluster mean, while leaving the key’s
and query’s standard deviation unchanged. As a result, it
increases the separation of key and query clusters (see also
Figure 1). On the other hand, increasing |w| has no system-
atic effect on the separation of query and key cluster, as w’s
effect on mean and standard deviation cancels out.

We empirically quantify the query and key cluster sepa-
ration using the Silhouette score [32]. Figure A1 shows this
score as a function of the input mean scale |µ| in the con-
trolled setting. The plot confirms above’s theoretical argu-
ment: increased input mean results in more separated keys
and queries.

The result of this separation of keys and queries is that
attention drawn by one key can increase for all queries when
moving the key in the direction of the query mean (because
in a sense, all queries lie in the same direction from the key
as long as they are distant and have small variance). On the

other hand, if keys and queries lie intermingled, than for any
direction the key moves, it will get closer to some queries
at the expense of increasing distance to other queries. Be-
cause of this, for an adversarial patch attack on the attention
weights, it is beneficial if keys and queries are well sepa-
rated (as in Figure 1).
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Figure A1. Silhouette score between clusters of projected keys and
queries for different choices of µ on synthetic data. Larger scores
corresponds to keys and queries forming more distinct clusters.

C. Ablation on Attention-Fool on ViT
In this section, we perform a series on ablations on

Attention-Fool losses on ViT. Sections C.1, C.3 and C.2 ab-
late on properties of the loss, while Section C.4 and C.5 on
properties of the adversarial patch.

C.1. Reduction over Heads and Layers
As discussed in Section 5, when multiple attention layers

and attention heads are present, one can aggregate per-layer
and per-head Lhl

kq in different ways. To study the influence
of these aggregation choices, in this section we empirically
test three of them: (i) smax (as in Section 5), (ii) hard max-
imum max and (iii) mean. Since we are aggregating along
two dimensions, layers and heads, this sparks nine combi-
nations of the three aggregations, which we empirically test
on ViT models. As shown in Table A1, across different
aggregation methods, choosing smax over both layers and
heads generally performs well, resulting in low robust ac-
curacies. Intuitively, using smax gives more flexibility to
the optimization to choose the most vulnerable layers and
heads. We also find that mean aggregation across both lay-
ers and heads is an effective choice, presumably in part due
to the fact that in ViT inputs to attention layers are pre-
emptively normalized, leading to smaller difference in per-
head per-layer behaviour. In comparison the hard maximum
max seems to be the weakest choice, leading to consistently
worse results. We note from Table A1 that the best combi-
nation is rather model-specific, which suggests that a simi-
lar ablation study could be run on a model-basis. In fact, we
will show in the next section how on DETR [8], Attention-
Fool with max aggregation results in better performance.



Table A1. Robust accuracies (%) under adversarial patch attacks with Attention-Fool losses when choosing different ways of aggregating
Lhl

kq across encoder layers and attention heads. All rows are computed using PGD250 with momentum and step size ↵=8/255. Numbers in
parenthesis report the improvement or degradation in robust accuracy w.r.t. the smax,smax default choice outlined in Section 5.

L reduction H reduction ViT-T ViT-B ViT-B-384 DeiT-T DeiT-B DeiT-B-384

smax smax 0.00 0.10 2.50 0.00 19.30 39.80
smax mean 0.00 (-0.00) 0.20 (+0.10) 2.70 (+0.20) 0.10 (+0.10) 17.80 (–1.50) 40.60 (+0.80)
smax max 0.00 (-0.00) 3.30 (+3.20) 5.80 (+3.30) 0.00 (-0.00) 36.60 (+17.30) 45.90 (+6.10)
mean smax 0.00 (-0.00) 0.00 (–0.10) 2.90 (+0.40) 0.00 (-0.00) 18.30 (–1.00) 40.40 (+0.60)
mean mean 0.00 (-0.00) 0.10 (-0.00) 3.50 (+1.00) 0.00 (-0.00) 17.50 (–1.80) 39.60 (–0.20)
mean max 0.00 (-0.00) 2.40 (+2.30) 9.20 (+6.70) 0.00 (-0.00) 23.80 (+4.50) 43.60 (+3.80)
max smax 0.10 (+0.10) 15.60 (+15.50) 26.70 (+24.20) 1.20 (+1.20) 27.10 (+7.80) 45.70 (+5.90)
max mean 0.20 (+0.20) 13.80 (+13.70) 24.60 (+22.10) 1.50 (+1.50) 26.10 (+6.80) 46.10 (+6.30)
max max 3.70 (+3.70) 45.50 (+45.40) 59.70 (+57.20) 1.50 (+1.50) 58.50 (+39.20) 58.80 (+19.00)

Table A2. Median of |(rXAh(X))X)/(Ah(X)1X)| over tokens and heads, for models on 12 encoder layers. We report the mean of the
ratio medians and its standard error over 100 randomly selected images from the MS COCO 2017 validation set [22] for DETR (DC5-R50),
and over 100 randomly selected images from the ImageNet 2012 [33] dataset for all remaining models.

DETR ViT-T ViT-S ViT-B DeIT-T DeIT-S DeIT-B

Layer 1 0.208± 0.008 0.079± 0.001 0.042± 0.001 0.072± 0.001 0.035± 0.000 0.045± 0.001 0.053± 0.001
Layer 2 0.035± 0.001 0.040± 0.001 0.051± 0.000 0.080± 0.001 0.045± 0.001 0.045± 0.000 0.044± 0.001
Layer 3 0.039± 0.001 0.031± 0.000 0.027± 0.000 0.047± 0.000 0.044± 0.001 0.033± 0.000 0.042± 0.000
Layer 4 0.066± 0.001 0.043± 0.001 0.028± 0.000 0.037± 0.000 0.035± 0.000 0.032± 0.000 0.057± 0.000
Layer 5 0.098± 0.001 0.037± 0.001 0.029± 0.000 0.033± 0.000 0.035± 0.000 0.033± 0.000 0.044± 0.000
Layer 6 0.147± 0.002 0.044± 0.001 0.027± 0.000 0.044± 0.001 0.070± 0.001 0.033± 0.000 0.040± 0.000
Layer 7 - 0.036± 0.000 0.031± 0.000 0.040± 0.000 0.045± 0.001 0.033± 0.001 0.040± 0.000
Layer 8 - 0.045± 0.001 0.046± 0.001 0.046± 0.001 0.050± 0.001 0.037± 0.001 0.039± 0.000
Layer 9 - 0.171± 0.005 0.087± 0.002 0.064± 0.001 0.076± 0.002 0.052± 0.001 0.049± 0.001
Layer 10 - 0.308± 0.006 0.126± 0.003 0.061± 0.001 0.082± 0.002 0.077± 0.002 0.083± 0.002
Layer 11 - 0.428± 0.009 0.280± 0.006 0.099± 0.002 0.080± 0.002 0.100± 0.003 0.192± 0.005
Layer 12 - 0.442± 0.013 0.469± 0.014 0.249± 0.006 0.212± 0.008 0.198± 0.009 0.104± 0.004

Table A3. Robust accuracy (%) of different vision transformers
when choosing l in Ll

kq , which targets a specific encoder layer
(see Section 5). Selecting l leads to worse results compared to the
baseline loss Lkq .

ViT-T ViT-B DeiT-T DeiT-B

Lkq 0.0 0.1 0.0 19.3

L(l)
kq , l = 1 7.5 (+7.5) 0.0 (-0.1) 14.0 (+14.0) 36.3 (+17.0)

l = 2 4.4 (+4.4) 39.1 (+39.0) 2.2 (+2.2) 56.1 (+36.8)
l = 3 0.2 (+0.2) 21.4 (+21.3) 1.0 (+1.0) 43.5 (+24.2)
l = 4 0.0 (-0.0) 17.2 (+17.1) 0.8 (+0.8) 22.1 (+2.8)
l = 5 0.0 (-0.0) 18.8 (+18.7) 1.3 (+1.3) 23.9 (+4.6)
l = 6 0.0 (-0.0) 12.4 (+12.3) 0.0 (-0.0) 24.6 (+5.3)
l = 7 0.0 (-0.0) 9.4 (+9.3) 0.0 (-0.0) 23.9 (+4.6)
l = 8 0.1 (+0.1) 3.2 (+3.1) 0.6 (+0.6) 18.4 (-0.9)
l = 9 0.0 (-0.0) 0.8 (+0.7) 0.1 (+0.1) 21.1 (+1.8)

l = 10 0.1 (+0.1) 1.3 (+1.2) 0.1 (+0.1) 23.5 (+4.2)
l = 11 0.0 (-0.0) 1.1 (+1.0) 0.2 (+0.2) 23.1 (+3.8)
l = 12 0.0 (-0.0) 1.0 (+0.9) 1.2 (+1.2) 25.4 (+6.1)

C.2. Choosing Specific Layer
Section 5 introduces per-layer, l, and per-head, h, losses

identified by Lhl
kq , but the evaluation of Section 6.2 focuses

Table A4. Robust accuracy (%) of different vision transformers
for adversarial patches of different sizes for Lkq? . As the patch
dimension shrinks to 8⇥8 (corresponding to 0.13% of total image
pixels), the robust accuracies increase as expected.

Patch Size ViT-T ViT-B DeiT-T DeiT-B

16⇥16 0.0 0.1 0.0 13.1
14⇥14 0.0 1.9 2.3 24.2
12⇥12 0.0 6.3 17.6 39.2
10⇥10 5.9 22.3 38.0 52.8

8⇥8 34.7 50.1 51.2 65.3

Clean Accuracy 73.6 85.0 69.5 82.0

on the aggregated loss Lkq and its version targeting the
special token Lkq? To study the effectiveness of targeting
specific encoder layers in the loss, here we compare using
single-layer Ll

kq with the aggregated Lkq; we report the re-
sults in Table A3. Targeting a single l via Ll

kq is typically
weaker than targeting all jointly via Lkq . In addition, it is
unclear how to choose l a priori without trying all options
as there is no common pattern across models.



Table A5. Robust accuracies (%) under Attention Fool adversarial patch attach using the un-normalized P
hl
Q and P

hl
K introduced in

Section 5. All rows are computed using PGD250 with momentum and step size ↵=8/255. Without normalization, Lkq and Lkq? do not
improve on Lce baselines and in fact perform much worse, likely because individual Lhl

kq losses are not commensurable with each other.

ViT-T ViT-B ViT-B-384 DeiT-T DeiT-B DeiT-B-384

Lce 0.10 13.50 31.20 19.80 36.00 58.80
+Lkq 53.10 (+53.00) 81.70 (+68.20) 84.50 (+53.30) 67.40 (+47.60) 79.80 (+43.80) 80.60 (+21.80)
+Lkq⇤ 24.40 (+24.30) 79.80 (+66.30) 82.00 (+50.80) 49.00 (+29.20) 79.60 (+43.60) 80.80 (+22.00)

+ Momentum 0.00 3.10 13.20 1.50 16.80 41.70
+Lkq 50.00 (+50.00) 81.60 (+78.50) 84.30 (+71.10) 66.80 (+65.30) 78.30 (+61.50) 80.30 (+38.60)
+Lkq⇤ 21.10 (+21.10) 80.30 (+77.20) 82.10 (+68.90) 24.10 (+22.60) 78.60 (+61.80) 80.10 (+38.40)

Table A6. Robust accuracies (%) of ResNet50 and different vision transformers with the adversarial patch positioned at the center of the
images. The evaluation setting is similar to Table 3 except for the position of the patch. Here, the robustness of ResNet50 has further
deteriorated compared to a patch placed at the image corners. In contrast, transformers demonstrate similar vulnerability with the patch
positioned at the center of the images and corner of the images under our Attention Fool loss variant Lkq?. These results indicate that the
transformers are less sensitive to location of the adversarial patch compared to CNNs.

ResNet50 ViT-T ViT-B ViT-B-384 DeiT-T DeiT-B DeiT-B-384

Lce 41.50 0.10 14.50 28.90 23.50 44.20 66.50
+Lkq - 0.00 (–0.10) 5.80 (–8.70) 23.10 (–5.80) 22.20 (–1.30) 44.90 (+0.70) 69.10 (+2.60)
+Lkq⇤ - 0.00 (–0.10) 4.10 (–10.40) 18.80 (–10.10) 12.60 (–10.90) 35.90 (–8.30) 67.20 (+0.70)

+ Momentum 31.10 0.00 2.40 11.10 1.60 20.90 42.30
+Lkq - 0.00 (-0.00) 0.30 (–2.10) 3.10 (–8.00) 0.10 (–1.50) 28.50 (+7.60) 48.90 (+6.60)
+Lkq⇤ - 0.00 (-0.00) 0.20 (–2.20) 2.60 (–8.50) 0.10 (–1.50) 11.70 (–9.20) 45.90 (+3.60)

C.3. Normalization

In Section 5 we introduced an `1,2 normalization in
the computation of Lkq , where projected queries and keys
are normalized as P̄

hl
Q = P hl

Q / 1
n ||P hl

Q ||1,2 and P̄
hl
K =

P hl
K/ 1

n ||P hl
K ||1,2. To evaluate the effect of this normalization

we compute Lkq without it, repeating the experiment re-
ported in Table 3, and report the results in Table A5. We ob-
serve that this `1,2 normalization is very crucial and without
normalization, performance of Lkq and Lkq? deteriorates
considerably, to levels clearly below Lce.

C.4. Patch Location

While Attention-Fool was designed to operate for arbi-
trary adversarial patch locations (as long as the adversar-
ial patch aligns with ViT/DeiTs patch tiling), the location
may have an effect on the resulting robust accuracies. In
Section 6.2 we set the patch location to be the top left-
most corner of the image. Here, we repeat the experiment
but we place the patch in the image center, and we target
the corresponding key. Specifically, in 224⇥224-resolution
models we place the patch top-left corner at 96,96, while
in 384⇥384 models we place it at 176,176. We repeat the
evaluation of Section 6.2 in this setting, and report the re-
sults in Table A6. Notably, the table shows that we obtain a
significant drop in ResNet50 robust accuracy because of the
different location (from 49.00% in Table 3 to 31.10% in Ta-

ble A6), while the robust accuracies of vision transformers
ViT and DeiT do not change significantly. Moreover, Lkq?

improves upon Lce for all but the DeiT-B-384 model.

C.5. Patch Sizes
The evaluation of Section 6.2 focuses on adversarial

patches of size 16⇥16, which corresponds with the token
dimension in the investigated ViT models. Here, we also in-
vestigate smaller adversarial patch sizes up to a dimension
of 8⇥8, we always place the top-left corner of the patch at
the (0, 0) coordinate (top-left) of the entire image. We re-
port the robust accuracies for varying sizes in Table A4. As
expected smaller patches lead to higher robust accuracies,
but we find that even very small patches of 8⇥8 decrease
the robust accuracy significantly compared to the clean ac-
curacy for some models.

D. Ablation on Targeted Attacks on ViT
In Section 6.2, we reported the robust accuracies for vi-

sion transformers under an untargeted patch attacks. Here,
we also evaluate a targeted attack on the same models by
selecting a target class in the optimization: rather than max-
imizing Lce with the true image class y as in Eq. 1, we
replace y with a target class y

? and minimize the Lce in-
stead (note that the Lkq loss is still maximized in a tar-
geted setting). The way we combine Lce with the Attention-



Table A7. Adversarial patch attack success rate (%) for a targeted attack with target class “0”. The evaluation setting is similar to Table 3.
Here, the attack success rate in vision transformers is larger than that of the ResNet50 model, but the improvements obtained with Attention
Fool in comparison to the cross-entropy baseline are not as consistent as in the untargeted attack setting.

ResNet50 ViT-T ViT-B ViT-B-384 DeiT-T DeiT-B DeiT-B-384

Lce 30.70 93.20 30.00 11.60 43.00 14.10 1.90
+Lkq - 94.60 (+1.40) 20.00 (-10.00) 12.20 (+0.60) 48.40 (+5.40) 14.80 (+0.70) 1.70 (-0.20)
+Lkq⇤ - 94.30 (+1.10) 19.50 (-10.50) 13.00 (+1.40) 49.10 (+6.10) 14.60 (+0.50) 2.30 (+0.40)

+ Momentum 38.90 100.00 42.70 23.80 100.00 75.20 4.70
+Lkq - 100.00 (+0.00) 43.10 (+0.40) 21.10 (-2.70) 99.10 (-0.90) 74.60 (-0.60) 4.60 (-0.10)
+Lkq⇤ - 100.00 (+0.00) 43.60 (+0.90) 22.40 (-1.40) 98.40 (-1.60) 77.10 (+1.90) 4.00 (-0.70)

Table A8. Mean Average Precisions (mAP) in presence of adversarial patches computed with Lce and Attention-Fool’s L(1)
kq patches on

DETR models. Differently than in Table 4, here we replace the adversarial target key – one of the units in the backbone feature map
– with its clean counterpart (the same unit computed in the non-patched image). Replacing the adversarial key removes the entirety of
the adversarial effect of Attention-Fool, showing how the mAP degradation under attack can be attributed to the target key alone. Three
different patch sizes and four different DETR models are considered, based either on R50 or R101 backbone and with and without dilation.

R50 DC5-R50 R101 DC5-R101

clean mAP 53.00 54.25 54.41 56.74

64⇥64: Lce 38.96 17.51 33.35 35.67
+L(1)

kq 51.85 (+12.90) 52.92 (+35.41) 48.85 (+15.50) 56.61 (+20.94)

L(1)
kq only 52.13 (+13.18) 53.48 (+35.97) 50.71 (+17.36) 57.11 (+21.44)

56⇥56: Lce 41.18 25.09 33.64 38.50
+L(1)

kq 53.34 (+12.17) 53.66 (+28.56) 53.51 (+19.87) 56.81 (+18.31)

L(1)
kq only 52.73 (+11.55) 53.28 (+28.19) 52.37 (+18.74) 57.18 (+18.68)

48⇥48: Lce 43.61 27.84 40.45 42.16
+L(1)

kq 52.54 (+8.93) 52.97 (+25.13) 53.52 (+13.06) 56.90 (+14.73)

L(1)
kq only 53.27 (+9.66) 53.99 (+26.16) 53.58 (+13.13) 56.90 (+14.74)

Fool variants is identical as in Section 6.2; here we choose
y

? = 0. In this case, rather than reporting robust accu-
racies, we report attack success rate, i.e., the percentage
of times the addition of the adversarial patch changed the
correct classification of an image into the target class y

?.
We report the results in Table A7, note that the colors and
the signs of improvements/degradation are inverted in com-
parison to the other tables. Table A7 shows that the ben-
efit of Attention-Fool in targeted attacks is less clear. We
hypothesise that different weighting of Lce and Lkq might
be required in targeted settings, specifically because Lce is
bounded by zero when minimized (while it is unbounded
when maximized in the untargeted setting). Additionally,
specific properties of the target class “0” on certain models
might bias the evaluation; a larger, more in-depth evaluation
of targeted attacks is left for future work.

E. Adversarial Token Replacement
In Section 6.3 we showed how targeting a single key with

Attention-Fool in DETR can lead to large degradation in
mAP. Differently than in ViT models, because of DETR’s
hybrid architecture (CNN plus Transformer) an adversarial

patch placed on the DETR image input affects a number of
tokens in the encoder’s input: all those backbone outputs
(tokens) whose receptive field via the CNN overlaps with
the input image patch. Here, to show that the attack perfor-
mance can be attributed to the individual key token that is
the Attention-Fool target, we replace this key with its clean
counterpart. To do so, we compute all keys on the clean
image and all keys in the patched image (by forwarding the
image through the CNN backbone), and we replace the tar-
get adversarial key with its clean counterpart. This is either
the key indexed by 2,2 or by 4,4 in non-dilated and dilated
models, respectively. We report the resulting mAPs in Ta-
ble A8. The table shows how replacing this single token’s
key removes a large part of the adversarial effect in all rows
using L(1)

kq loss. In comparison, in rows using Lce, replac-
ing this token’s key still results in low mAPs, showing that
in this case the adversarial effect is not attributable to the
same adversarial token alone.

F. Additional Visualizations
We report additional visualizations akin to those in Fig. 1

and Fig. 4 in Figure A3 and Figure A2, respectively.



Figure A2. Embedded projected key and query tokens for clean and patched input images on each of the 12 DeiT-B layers, for a single
attention head. For each image we chose an attention head which showed large amount of changes. The last column reports the attention
map weights of the adversarial key on the last layer – showing that generally the key draws a large amount of attention from queries. Note
that while the adversarial patch tends to focus on drawing the attention on the last layer (which is visualized in the right-most column), it
can target arbitrary layers – in fact, we obtain successful mis-classifications even if the last layer attention map only has minor changes.



Figure A3. More comparisons of clean and adversarially patched input for DETR [8]. The patch shifts a targeted key token towards the
cluster of query tokens. In dot-product attention, this directs queries attention to the malicious token and prevents the model from detecting
the remaining objects. The right-most column compares queries’ attention weights to the adversarial key, whose location is marked by a
red box, between clean and patched inputs. These images use DETR DC5-R50 and patches are optimized with Lce + L(1)

kq .


