

Learning based Multi-modality Image and Video Compression (Supplementary Materials)

Due to the space limitation in the main paper, we provide more implementation details and comprehensive results in the supplementary material.

1. Experiments

Multi-modality Image Compression on the FLIR Dataset

Dataset In the main paper, we only provide the BDBR results for the compression results on the FLIR dataset. Here, Fig. S1 and Fig. S2 further show the rate-distortion curves from different compression approaches for visible and infrared image compression on the FLIR dataset [2]. Compared with the separately optimized single-modality compression method [9], our approach achieves 0.4dB and 0.2dB gains on the FLIR dataset for the visible image compression and infrared image compression, respectively.

Multi-modality Image Compression LPIPS metrics

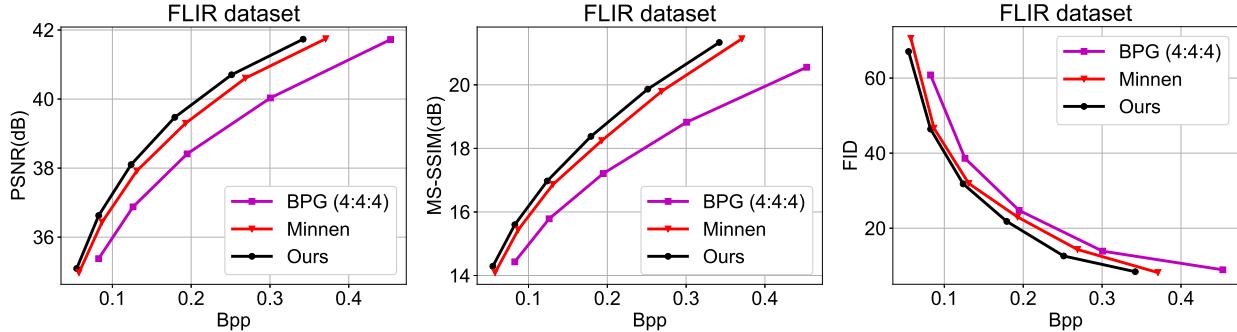


Figure S1. Visible image compression results from different approaches on the FLIR dataset in terms of PSNR, MS-SSIM and FID.

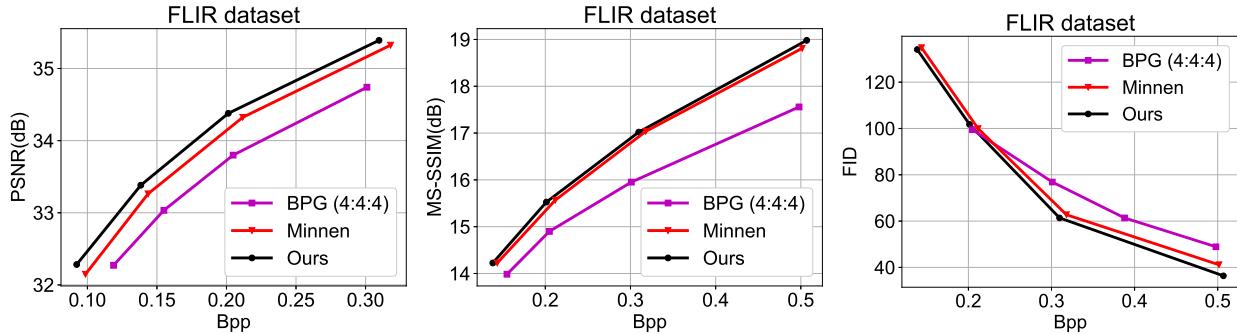


Figure S2. Infrared image compression results from different approaches on the FLIR dataset in terms of PSNR, MS-SSIM and FID.

Table S1. The BDBR [4] results of our method and Minnen's approach when compared with BPG for LPIPS metrics for the visible or infrared image compression on FLIR and KAIST datasets.

Methods	FLIR		KAIST	
	visible	infrared	visible	infrared
Minnen [9]	-17.162	-16.439	-5.852	3.994
Ours	-30.560	-19.523	-17.974	-3.891

We evaluate the compression performance in terms of the LPIPS [10] metric. As shown in fig.S3, our approach obviously outperforms the single modality approaches [1, 9] for both visible and infrared image compression on both FLIR and KAIST datasets. When compared with the single modality approach [9], our approach achieves more than 15.8% bitrate savings for visible image compression on the FLIR dataset. The BDBR results are provided in Table S1.

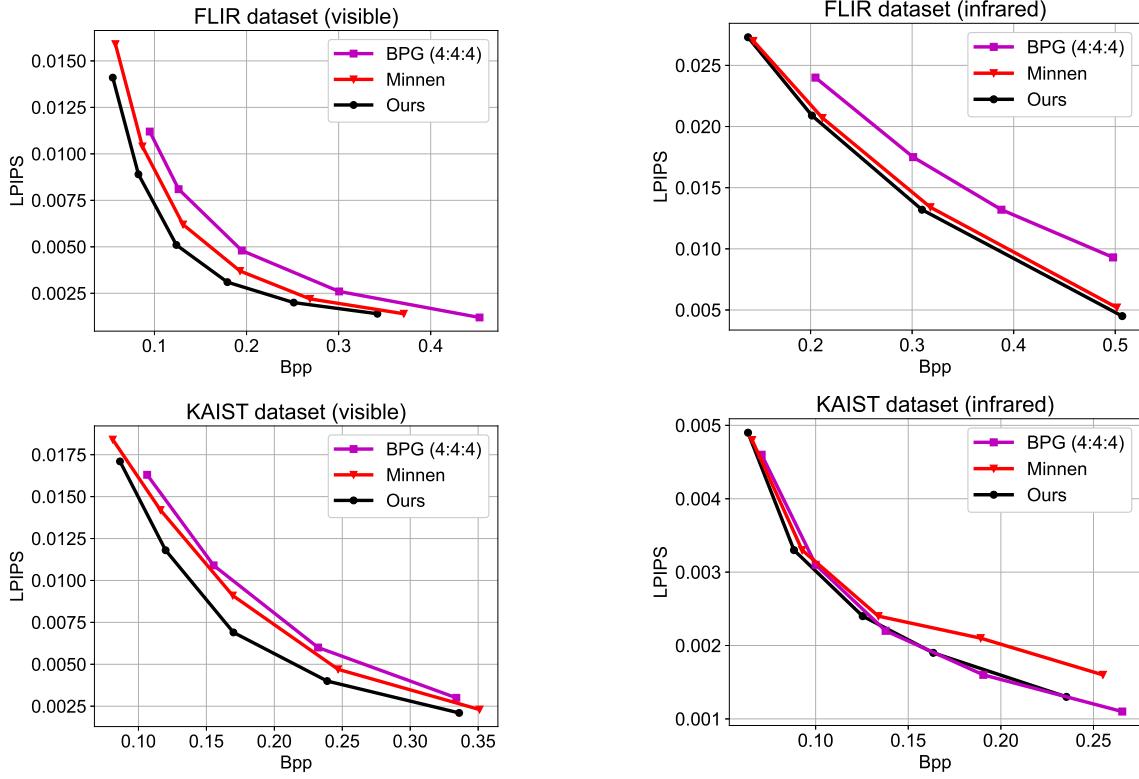


Figure S3. Visible and infrared image compression LPIPS results from different approaches on the FLIR and KAIST dataset.

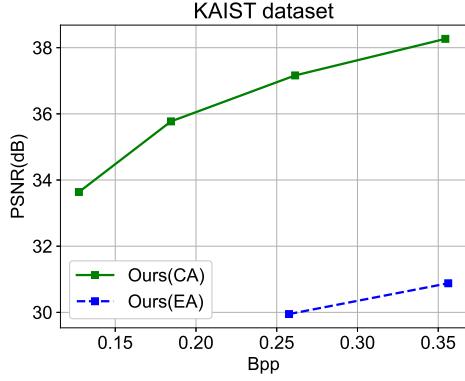


Figure S4. RD curves of the proposed framework with element-wise alignment module *Ours(EA)* and channel-wise alignment module *Ours(CA)*.

Element-wise Alignment As shown Fig. S4, we provide the RD curve when our approach using the element-wise alignment module (*Ours(EA)*). Experimental results show that it performs much worse than our proposed approach with channel-wise alignment (*Ours(CA)*).

The number of Spatial Alignment module In our default implementation, we use 3 spatial alignment modules (*Ours(SA)*) at the decoder side in the proposed framework and achieve 0.3db improvements over the baseline method [9]. Here we also provide the comparison results

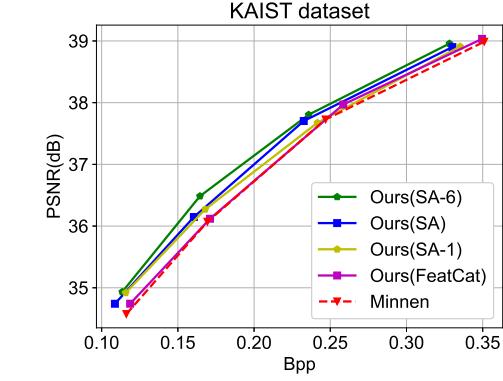


Figure S5. RD curves of different variants for our proposed method. *Ours(SA)* is the default implementation in our approach and uses 3 spatial alignment modules at the decoder side. And *Ours(SA-6)* represents our model using 6 spatial alignment modules at both encoder and decoder sides, while *Ours(SA-1)* represents our model using single spatial alignment module before the last deconvolution layer at the decoder side. *Ours(FeatCat)* represents our model using the simple concatenation between the intermediate features from different modalities.

using single spatial alignment module (*Ours(SA-1)*) and 6 spatial alignment modules at both the encoder and decoder sides (*Ours(SA-6)*). As the shown Fig. S5, the performance improves while increasing the number of modules. The approaches *Ours(SA-6)* and *Ours(SA-1)* have 0.4 and 0.2 gains

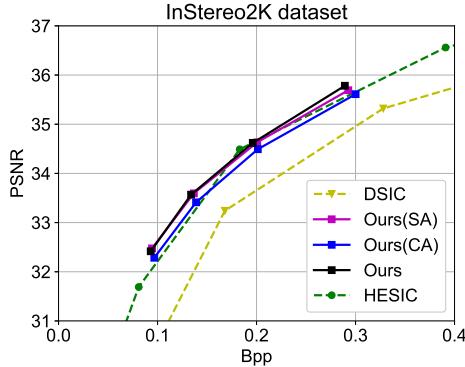


Figure S6. RD curves of the proposed framework and the main-stream stereo compression approaches on the InStereo2K dataset.

on the KAIST dataset [7], respectively. Considering the trade-off between the performance and complexity, we use 3 spatial alignment modules in our implementation.

Feature Concatenation To reduce the cross-modality redundancy, we also try to remove the spatial alignment modules and simply concatenate the intermediate features from different modalities. As shown in Fig. S5, the feature concatenation method (*Ours(FeatCat)*) can only bring little improvements on the KAIST dataset when compared with the baseline method [9], which further demonstrates the effectiveness of our spatial alignment module.

Stereo Compression We further evaluated our approach on the InStereo2K [3] dataset for stereo image compression to demonstrate the effectiveness of our approach for other multi-source data (See Fig. S6). Compared with the stereo compression method DSIC [8], we achieve 27% bitrate savings. Furthermore, as expected by the reviewer, more than 25% bitrate can be saved by using the spatial-wise alignment module alone, while using the channel-wise alignment module only brings less improvement(20%). Meanwhile, the value of γ is almost identity (variance is 1e-4) and the value of β is nearly zero (mean is 2e-4). In addition, our full model also saves nearly 3% bitrate over the recent work HESIC [5].

2. Implementation Details

Joint Optimization In the training stage for the joint optimization of infrared and visible image compression, to maintain the performance of the infrared image compression and improve the compression for visible image compression, we additionally introduce a pretrained infrared image model as the reference model. During the training stage, the parameters of the reference model are frozen. Then, the multi-modality compression framework (both infrared and visible image compression) is optimized by using the following rate-distortion loss function,

$$\mathcal{L}_{RD} = \mathcal{L}_{RD}^v + w|\mathcal{L}_{RD}^i - \mathcal{L}_{RD}^{i*}| \quad (1)$$

where \mathcal{L}_{RD}^{i*} represents the loss of the reference infrared model, and w is a trade-off parameter and set as 5. \mathcal{L}_{RD}^v and \mathcal{L}_{RD}^i represent the losses for the visible and infrared image compression in our multi-modality compression. We have reported the experimental results in the main paper and it is observed that the joint optimization only brings marginal performance improvement. Therefore, we do not use the joint optimization in our default implementation.

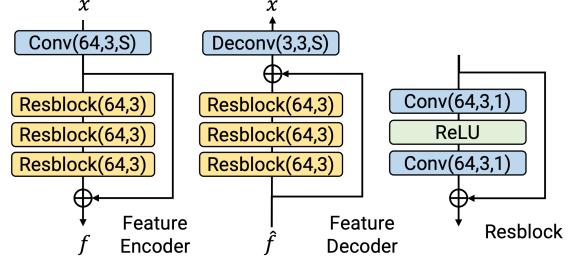


Figure S7. The network architectures of the feature encoder and feature decoder in our framework. S represents the stride of the convolution(deconvolution) layer.

Feature Encoder and Feature Decoder Fig. S7 shows the network structure of the feature encoder and feature decoder in the multi-modality image and video compression framework. In our approach, the stride S of the first convolution(deconvolution) layer for the visible modality and infrared modality are set as 2 and 1 in the image compression framework since the size ratio of the color-thermal pairs is 2:1.

Multi-modality Image Compression Framework The complete architecture of the multi-modality image compression framework is shown in Fig. S8. We use Minnen's approach [9] as our baseline to implement our multi-modality image compression framework.

Spatial Alignment Module In the spatial alignment module, we set the patch size, window size and the number of heads in the Multi-head Cross Attention (MCA) module as 2, 8 and 3, respectively.

Multi-modality Video Compression Framework Fig. S9 shows the complete structure of the multi-modality video compression framework. We use the FVC [6] as the baseline to implement our multi-modality video compression framework. Specifically, we first use FVC to compress the infrared video sequences. For the visible video sequences, in addition to the existing motion compensation in video codec, we further employ the affine transformation to generate more accurate compensated results. Furthermore, we also use the spatial alignment module in the residual decoder for the visible video compression.

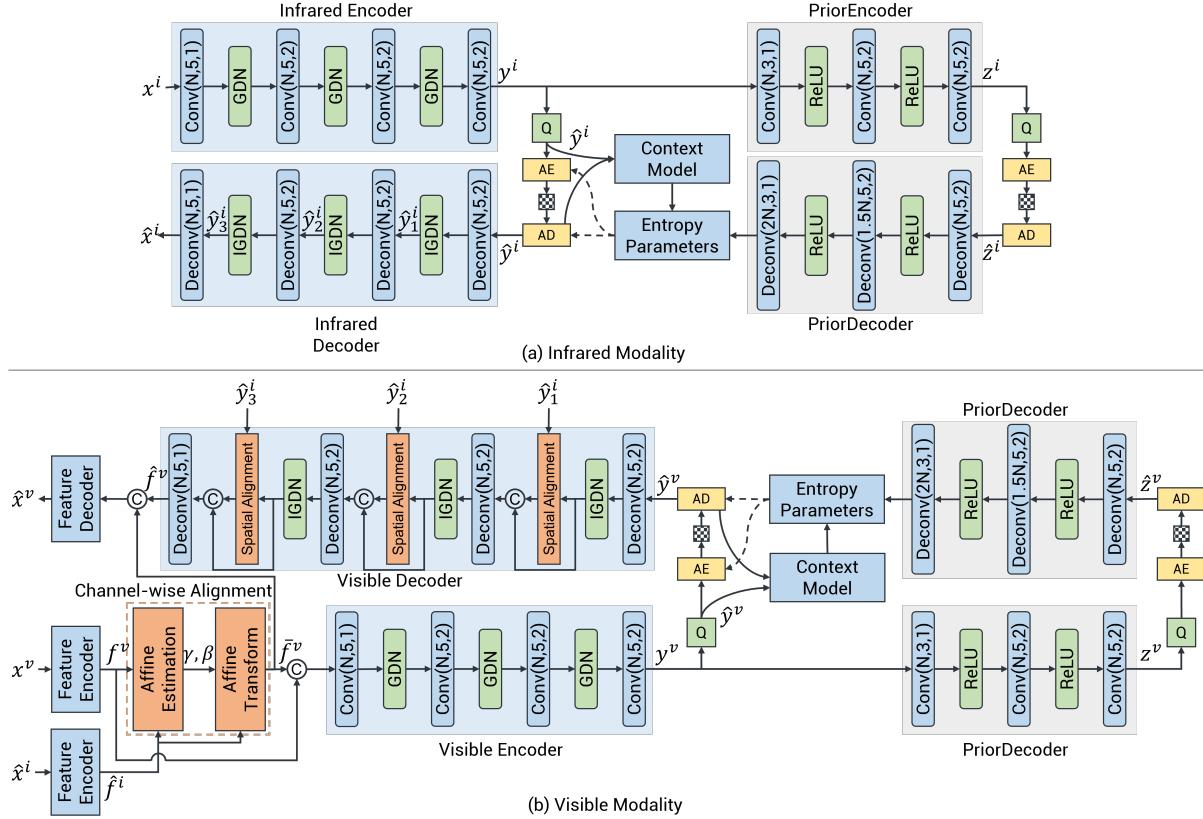


Figure S8. The network architecture of our proposed multi-modality image compression. (a) The network architecture for infrared image compression. (b) The network architecture for the visible image compression. AE and AD are arithmetic encoder and decoder, respectively, and N is the number of channel and is set as 192 in the experiments. The context model and entropy model follow the design of Minnen's approach [9]. \hat{x}^i and \hat{y}_j^i in the (b) represent the reconstructed infrared image and intermediate features in the (a).

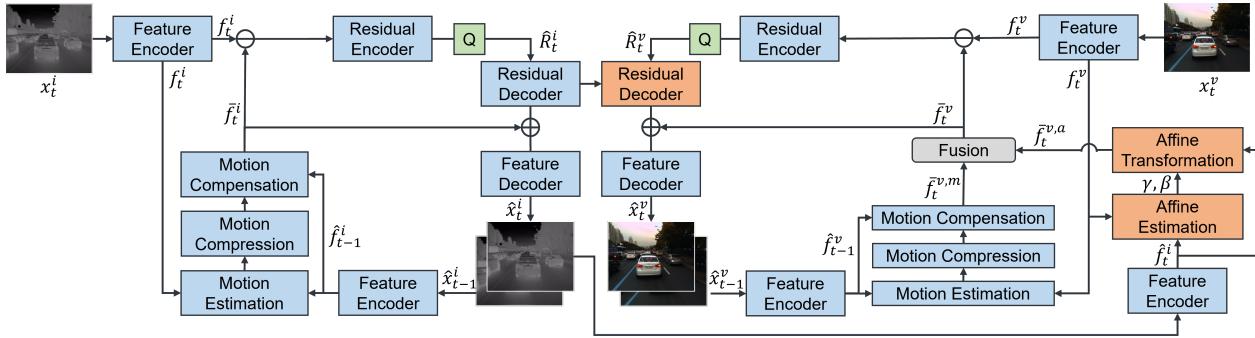


Figure S9. The complete network structure of multi-modality video compression in Fig. 4 of the main paper.

3. Dataset Description

FLIR testing dataset The filenames of the 20 randomly selected thermal-color image pairs from the FLIR dataset [2] are listed below.

FLIR_08884.png	FLIR_09042.png	FLIR_09063.png
FLIR_09175.png	FLIR_09218.png	FLIR_09311.png
FLIR_09451.png	FLIR_09673.png	FLIR_09682.png
FLIR_09705.png	FLIR_09706.png	FLIR_09728.png
FLIR_09751.png	FLIR_09792.png	FLIR_09886.png
FLIR_09896.png	FLIR_10082.png	FLIR_10107.png
FLIR_10171.png	FLIR_10217.png	

KAIST testing dataset The filenames of the 18 thermal-color image pairs from the KAIST dataset [7] are listed below.

set06/V000/I00000.png	set06/V001/I00000.png
set06/V002/I00000.png	set06/V004/I00000.png
set07/V000/I00000.png	set07/V001/I00000.png
set07/V002/I00000.png	set07/V002/I01596.png
set08/V000/I00000.png	set08/V001/I00000.png
set08/V002/I02499.png	set09/V000/I00000.png
set09/V000/I03499.png	set10/V000/I00000.png
set10/V001/I00000.png	set10/V001/I04193.png
set11/V000/I00000.png	set11/V001/I02019.png

References

- [1] F. bellard, bpg image format. <http://bellard.org/bpg/>. Accessed: 2018-10-30. 1
- [2] Flir thermal dataset. <https://www.flir.com/oem/adas/adas-dataset-form/>. Accessed: 2020-11-11. 1, 5
- [3] Wei Bao, Wei Wang, Yuhua Xu, Yulan Guo, Siyu Hong, and Xiaohu Zhang. Instereo2k: A large real dataset for stereo matching in indoor scenes. *Science China Information Sciences*, 63(11):1–11, 2020. 3
- [4] Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. *VCEG-M33*, 2001. 1
- [5] Xin Deng, Wenzhe Yang, Ren Yang, Mai Xu, Enpeng Liu, Qianhan Feng, and Radu Timofte. Deep homography for efficient stereo image compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1492–1501, 2021. 3
- [6] Zhihao Hu, Guo Lu, and Dong Xu. Fvc: A new framework towards deep video compression in feature space. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1502–1511, 2021. 3
- [7] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, and In So Kweon. Multispectral pedestrian detection: Benchmark dataset and baseline. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1037–1045, 2015. 3, 5
- [8] Jerry Liu, Shenlong Wang, and Raquel Urtasun. Dsic: Deep stereo image compression. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3136–3145, 2019. 3
- [9] David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hierarchical priors for learned image compression. In *Advances in Neural Information Processing Systems*, pages 10771–10780, 2018. 1, 2, 3, 4
- [10] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 586–595, 2018. 1