
Learning based Multi-modality Image and Video Compression
(Supplementary Materials)

Due to the space limitation in the main paper, we provide
more implementation details and comprehensive results in
the supplementary material.

1. Experiments
Multi-modality Image Compression on the FLIR

Dataset In the main paper, we only provide the BDBR
results for the compression results on the FLIR dataset.
Here, Fig. S1 and Fig. S2 further show the rate-distortion
curves from different compression approaches for visible
and infrared image compression on the FLIR dataset [2].
Compared with the separately optimized single-modality
compression method [9], our approach achieves 0.4dB and
0.2dB gains on the FLIR dataset for the visible image com-
pression and infrared image compression, respectively.

Multi-modality Image Compression LPIPS metrics

Table S1. The BDBR [4] results of our method and Minnen’s ap-
proach when compared with BPG for LPIPS metrics for the visible
or infrared image compression on FLIR and KAIST datasets.

Methods FLIR KAIST
visible infrared visible infrared

Minnen [9] -17.162 -16.439 -5.852 3.994
Ours -30.560 -19.523 -17.974 -3.891

We evaluate the compression performance in terms of the
LPIPS [10] metric. As shown in fig.S3, our approach ob-
viously outperforms the single modality approaches [1, 9]
for both visible and infrared image compression on both
FLIR and KAIST datasets. When compared with the sin-
gle modality approach [9], our approach achieves more than
15.8% bitrate savings for visible image compression on the
FLIR dataset. The BDBR results are provided in Table S1.
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Figure S1. Visible image compression results from different approaches on the FLIR dataset in terms of PSNR, MS-SSIM and FID.
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Figure S2. Infrared image compression results from different approaches on the FLIR dataset in terms of PSNR, MS-SSIM and FID.
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Figure S3. Visible and infrared image compression LPIPS results from different approaches on the FLIR and KAIST dataset.
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Figure S4. RD curves of the proposed framework with element-
wise alignment module Ours(EA) and channel-wise alignment
module Ours(CA).

Element-wise Alignment As shown Fig.S4, we provide
the RD curve when our approach using the element-wise
alignment module (Ours(EA)). Experimental results show
that it performs much worse than our proposed approach
with channel-wise alignment (Ours(CA)).

The number of Spatial Alignment module In our de-
fault implementation, we use 3 spatial alignment mod-
ules (Ours(SA)) at the decoder side in the proposed frame-
work and achieve 0.3db improvements over the baseline
method [9]. Here we also provide the comparison results
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Figure S5. RD curves of different variants for our proposed
method. Ours(SA) is the default implementation in our approach
and uses 3 spatial alignment modules at the decoder side. And
Ours(SA-6) represents our model using 6 spatial alignment mod-
ules at both encoder and decoder sides, while Ours(SA-1) repre-
sents our model using single spatial alignment module before the
last deconvolution layer at the decoder side. Ours(FeatCat) repre-
sents our model using the simple concatenation between the inter-
mediate features from different modalities.

using single spatial alignment module (Ours(SA-1)) and 6
spatial alignment modules at both the encoder and decoder
sides (Ours(SA-6)). As the shown Fig. S5, the performance
improves while increasing the number of modules. The ap-
proaches Ours(SA-6) and Ours(SA-1) have 0.4 and 0.2 gains
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Figure S6. RD curves of the proposed framework and the main-
stream stereo compression approaches on the InStereo2K dataset.

on the KAIST dataset [7], respectively. Considering the
trade-off between the performance and complexity, we use
3 spatial alignment modules in our implementation.

Feature Concatenation To reduce the cross-modality
redundancy, we also try to remove the spatial alignment
modules and simply concatenate the intermediate features
from different modalities. As shown in Fig. S5, the feature
concatenation method (Ours(FeatCat)) can only bring little
improvements on the KAIST dataset when compared with
the baseline method [9], which further demonstrates the ef-
fectiveness of our spatial alignment module.

Stereo Compression We further evaluated our approach
on the InStereo2K [3] dataset for stereo image compression
to demonstrate the effectiveness of our approach for other
multi-source data (See Fig.S6). Compared with the stereo
compression method DSIC [8], we achieve 27% bitrate sav-
ings. Furthermore, as expected by the reviewer, more than
25% bitrate can be saved by using the spatial-wise align-
ment module alone, while using the channel-wise alignment
module only brings less improvement(20%). Meanwhile,
the value of γ is almost identity (variance is 1e-4) and the
value of β is nearly zero (mean is 2e-4). In addition, our
full model also saves nearly 3% bitrate over the recent work
HESIC [5].

2. Implementation Details

Joint Optimization In the training stage for the joint
optimization of infrared and visible image compression, to
maintain the performance of the infrared image compres-
sion and improve the compression for visible image com-
pression, we additionally introduce a pretrained infrared im-
age model as the reference model. During the training stage,
the parameters of the reference model are frozen. Then, the
multi-modality compression framework (both infrared and
visible image compression) is optimized by using the fol-
lowing rate-distortion loss function,

LRD = Lv
RD + w|Li

RD − Li∗
RD| (1)

where Li∗
RD represents the loss of the reference infrared

model, and w is a trade-off parameter and set as 5. Lv
RD and

Li
RD represent the losses for the visible and infrared image

compression in our multi-modality compression. We have
reported the experimental results in the main paper and it
is observed that the joint optimization only brings marginal
performance improvement. Therefore, we do not use the
joint optimization in our default implementation.

Figure S7. The network architectures of the feature encoder and
feature decoder in our framework. S represents the stride of the
convolution and deconvolution layer.

Feature Encoder and Feature Decoder Fig.S7 shows
the network structure of the feature encoder and feature de-
coder in the multi-modality image and video compression
framework. In our approach, the stride S of the first convo-
lution(deconvolution) layer for the visible modality and in-
frared modality are set as 2 and 1 in the image compression
framework since the size ratio of the color-thermal pairs is
2:1.

Multi-modality Image Compression Framework The
complete architecture of the multi-modality image com-
pression framework is shown in Fig. S8. We use Min-
nen’s approach [9] as our baseline to implement our multi-
modality image compression framework.

Spatial Alignment Module In the spatial alignment
module, we set the patch size, window size and the number
of heads in the Multi-head Cross Attention (MCA) module
as 2, 8 and 3, respectively.

Multi-modality Video Compression Framework
Fig. S9 shows the complete structure of the multi-modality
video compression framework. We use the FVC [6] as the
baseline to implement our multi-modality video compres-
sion framework. Specifically, we first use FVC to compress
the infrared video sequences. For the visible video se-
quences, in addition to the existing motion compensation in
video codec, we further employ the affine transformation to
generate more accurate compensated results. Furthermore,
we also use the spatial alignment module in the residual
decoder for the visible video compression.



Figure S8. The network architecture of our proposed multi-modality image compression. (a) The network architecture for infrared image
compression. (b) The network architecture for the visible image compression. AE and AD are arithmetic encoder and decoder, respectively,
and N is the number of channel and is set as 192 in the experiments. The context model and entropy model follow the design of Minnen’s
approach [9]. x̂i and ŷi

j∈1,2,3 in the (b) represent the reconstructed infrared image and intermediate features in the (a).

Figure S9. The complete network structure of multi-modality video compression in Fig. 4 of the main paper.



3. Dataset Description
FLIR testing dataset The filenames of the 20 ran-

domly selected thermal-color image pairs from the FLIR
dataset [2] are listed below.

FLIR 08884.png FLIR 09042.png FLIR 09063.png
FLIR 09175.png FLIR 09218.png FLIR 09311.png
FLIR 09451.png FLIR 09673.png FLIR 09682.png
FLIR 09705.png FLIR 09706.png FLIR 09728.png
FLIR 09751.png FLIR 09792.png FLIR 09886.png
FLIR 09896.png FLIR 10082.png FLIR 10107.png
FLIR 10171.png FLIR 10217.png

KAIST testing dataset The filenames of the 18 thermal-
color image pairs from the KAIST dataset [7] are listed be-
low.

set06/V000/I00000.png set06/V001/I00000.png
set06/V002/I00000.png set06/V004/I00000.png
set07/V000/I00000.png set07/V001/I00000.png
set07/V002/I00000.png set07/V002/I01596.png
set08/V000/I00000.png set08/V001/I00000.png
set08/V002/I02499.png set09/V000/I00000.png
set09/V000/I03499.png set10/V000/I00000.png
set10/V001/I00000.png set10/V001/I04193.png
set11/V000/I00000.png set11/V001/I02019.png
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