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Abstract

Equivariance has been a long-standing concern in vari-
ous fields ranging from computer vision to physical model-
ing. Most previous methods struggle with generality, sim-
plicity, and expressiveness — some are designed ad hoc for
specific data types, some are too complex to be accessible,
and some sacrifice flexible transformations. In this work,
we propose a novel and simple framework to achieve equiv-
ariance for point cloud analysis based on the message pass-
ing (graph neural network) scheme. We find the equivariant
property could be obtained by introducing an orientation
for each point to decouple the relative position for each
point from the global pose of the entire point cloud. There-
fore, we extend current message passing networks with a
module that learns orientations for each point. Before ag-
gregating information from the neighbors of a point, the net-
works transforms the neighbors’ coordinates based on the
point’s learned orientations. We provide formal proofs to
show the equivariance of the proposed framework. Empir-
ically, we demonstrate that our proposed method is com-
petitive on both point cloud analysis and physical model-
ing tasks. Code is available at https://github.com/
luost26/Equivariant—-OrientedMP.

1. Introduction

3D point cloud has become a prevalent data structure for
representing a wide range of 3D objects such as 3D scenes
[1,4,8,36], molecules [12, 15, 28], and physical particles
[7,31]. To capture the geometric relationship among points,
message passing networks (graph neural networks) [9] and
their variants such as DGCNN [33] and PointNet++ [24]
have become standard tools to model 3D point cloud data.
A characteristic of 3D point cloud is that most of the scalar
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Figure 1. An illustration of the proposed method. It first learns ori-
entations for each point in the point cloud. By projecting the rela-
tive coordinate of neighbor points before information aggregation,
the model successfully decouples global rotation and achieves
equivariance.

features of the point cloud are invariant' to global rotation
and translation, and the vector features of point clouds are
equivariant to global rotation and translation. For instance,
the category of a shape and its part semantics are not af-
fected by their poses in the 3D space, and the normal vector
of each point rotates together with the shape. Therefore,
designing a new type of message passing network that pre-
serves invariance and equivariance for point clouds is a crit-
ical challenge with broad impacts on both computer vision
and other science domains.

The key module of conventional message passing net-
works for modeling point clouds is to construct the mes-
sage from point j to ¢ using the difference between 3D
coordinates x; — x; which is usually transformed by non-
equivariant layers such as regular MLPs. Hence, it is clear
that the outputs of these models are not equivariant to the
rotation of point clouds.

Recently, two notable lines of methods have been pro-
posed to address the equivariance problem: tensor field-
based neural networks [7,31] and vector-based neural net-

INote that invariance is a special case of equivariance.
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works [5, 10,27,29]. Tensor field-based networks operate
in the 3D space using continuous convolutions and the fil-
ters in the model are constrained to be the composite of a
learnable radial function and a spherical harmonic. Though
achieving equivariance, they suffer from high space and
time complexity because a significant amount of the spheri-
cal harmonics need to be calculated on the fly. The com-
plicated formulation of tensor field networks also makes
them less accessible to the community. Vector-based neu-
ral networks are a good alternative to tensor field networks.
The core part of vector neural networks is their linear layer
which takes a list of vectors in 3D space as input and out-
puts multiple linear combinations of the input vectors. The
output vectors are equivariant to input rotations by the na-
ture of the linear combination. However, as the fully con-
nected layer of vector networks linearly combines input
vectors, different dimensions of the vectors are separated,
which prohibits flexible vector transformations and hinders
information flows between dimensions. In addition, vector-
based neural networks are inadequate to model essential ge-
ometric relationships such as angles due to the linearity of
the vector propagation.

To address this challenge, we introduce a novel equiv-
ariant message passing model by learning the orientation of
each point during the message passing process. The over-
all learning process includes three key steps. First, it learns
the orientation matrix for each point. Second, we project
the relative position vector between these two points to the
learned orientations, which decouples the relative position
of two points from global rotations. Next, the projected rel-
ative position difference is integrated into neural messages
by some specific network architecture. In the end, we can
get both invariant and equivariant properties based on the
output features of message passing layers along with the
learned orientations.

In comparison to previous equivariant models, our
method is much simpler but more flexible. Specifically,
we can easily extend our model by applying arbitrary trans-
forms to the projected relative position vector to compose
the message, while vector-based networks only allow the
linear combination of vectors.

To summarize, our main contributions include: (1) We
propose a new framework for equivariant point cloud anal-
ysis and provide formal formulation and proof of the equiv-
ariance. (2) We show the framework’s generality by us-
ing it to augment classical point cloud networks including
DGCNN and RS-CNN. (3) We conduct extensive experi-
ments on various tasks including point cloud classification,
segmentation, normal estimation, and many-body model-
ing, and demonstrate that the proposed method achieves
competitive performance.

2. Related Work

Message Passing Networks for Point Clouds Message
passing neural networks (also known as graph neural net-
works) [9] have become a standard architecture to approach
machine learning tasks on point clouds. Representative
models include PointNet++ [24], DGCNN [33], RS-CNN
[21], PointCNN [20, 35], and so on [6]. For each point
in the point cloud, a message passing layer is first applied
to aggregate information from features and relative posi-
tions of its neighbor points. The aggregated information is
transformed to point representation by using standard neu-
ral networks such as MLPs. By definition, directly using
MLPs to process coordinates is not equivariant to rotation
and one can observe that a rotation of the 3D objects might
yield different predictions for these models. Recently, there
has been a growing interest in designing new deep learning
architectures which can preserve equivariant and invariant
properties.

Equivariance via Orientation Estimation Estimating
canonical orientations for objects is a way to decouple the
global rotation and achieve equivariance. PointNet [23]
constructs a sub-network based on standard MLPs to esti-
mate a canonical orientation in the form of a 3x3 matrix for
each input shape. However, the matrix is not restricted to be
an orthogonal rotation matrix and it is not equivariant to the
input either. PointNet can only achieve approximate equiv-
ariance by data augmentation. GC-Conv [38] uses principal
component analysis (PCA) to define canonical orientations
at different scales but its orientations rely on handcrafted
prior knowledge which is not available for many real-world
applications. LGR-Net [42] relies on normal vectors as ad-
ditional inputs, which could be viewed as a special form
of orientation for each point. Yet, in most settings, normal
vectors are hard to acquire or even not defined. Quaternion
equivariant capsule network [43] uses quaternions to rep-
resents point-wise orientations. However, it requires initial
orientations as input, while our methods learn orientations
in a fully end-to-end manner. Other works [3, 19,26,30,32]
classified to this class mainly focus on pose estimation and
most of them require the supervision by the ground-truth
canonical pose and are only equivariant by data augmenta-
tion.

Equivariance via Vector-Based Networks Recently,
vector-based neural networks have emerged as a new ap-
proach to achieve equivariance [5, 10,27,29]. They gener-
alize scalar activations in standard neural networks to vec-
tor activations. To process these vector activations, vector-
based linear layer is designed to take a list of vectors as
input and output multiple linear combinations of the input
vectors, which makes the entire network equivariant by na-



ture. For the activation functions, GVP [10] scale the vec-
tors based on their norm. Consequently, vectors passed
through such activation layers remain a linear combination
of the input vectors. VNN [5] introduces a non-linear layer
that outputs two sets of vectors and projects one to another.
Since the two sets of vectors are both equivariant to inputs,
the projected vectors are also equivariant. The major lim-
itation of vector-based networks arises from linear combi-
nations — as their fully connected layer linearly combines
input vectors. This prohibits flexible vector transformations
and hinders information flows among vector dimensions.

Other Equivariant Networks Tensor field-based net-
works [7, 22, 31] are another thread of works which could
achieve equivariance. They rely on constraining the con-
volutional kernel to the spherical harmonics family. By
restricting the space of learnable functions, features con-
volved with these kernels are provably equivariant to ro-
tations and translations. However, it takes much space to
cache the spherical harmonics calculated for irregular point
clouds, leading to high space and time complexity. Concur-
rently, many works take efforts to design invariant opera-
tors [2,11,16,17,25,28,34], based on rotationally invariant
measures such as distances and angles.

3. Preliminaries
3.1. Notations

We denote a point cloud as X = (x1,...,xy), where
each point is represented as a 3D vector x; € R3. The ori-
entation of point 7 is defined as a 3x3 rotation matrices O;.
The optimized orientation matrices should satisfy orthogo-
nality constraint that O] = O; ' and has unit determinant
(det O; = 1)°.

3.2. Equivariance

Let G denote a transformation group (e.g. rotation group,
permutation group, efc.), g € G denote a specific transform
in the group, and 7,4 (z) : X — X denote the function that
applies transform g to the the input z € X. A function
f + X — Y is equivariant to G if there exists a transform
function on the output domain Sy (y) : Y — Y such that for
all input z € X, the following equation holds:

[Ty (2)) = Sq (f (2)) .- (D

In point cloud analysis, we consider the following types of
equivariance:

* Rotational and translational invariance: The shape
category of point clouds and point-wise semantic la-
bels fall into this type of equivariance. Specifically,

2We can always choose the right-handed orientation so that the deter-
minant is 1 instead of -1.

G is the group of rigid transform (rotation and trans-
lation) whose elements can be represented by a ro-
tation matrix and a translation vector: (R,t). The
transform function on the input domain is defined as
Trt)(X) = (Rx1+t,..., Rey+t). The transform
function on the output domain (the domain of shape
categories and semantic labels) is simply an identity
transform: S(g¢)(c) = c. In other words, a point
cloud X’s category or semantic labels ¢ keeps un-
changed regardless of the rotations and translations ap-
plied to X.

* Rotational equivariance and translational invari-
ance: Point-wise normal vectors and velocities of
physical particles fall into this class. In particular, G is
also the group of rigid transform. 7 ;) is defined as
7—(Rt)(X) = (RIBl + t, ey RSEN + t), and S(R,t) is
defined as Sry) (v1,...,vn) = (Rvy,..., Ruy).
Here, v; € R? can represent the point-wise normal
vector or velocity in the N-Body system modeling
problem.

¢ Permutation equivariance and invariance: These
types of equivariance are not among the interest of this
work because most message passing networks are al-
ready permutation equivariant for point-wise features
and invariant for global features. They can be trivially
combined with the geometric equivariance discussed
above. We state them formally here for clarity: G is
the permutation group, and a permutation is denoted
as a bijective mapping ¢ on {1,..., N}. The trans-
form function is 75(X) = (Z,(1),. .., To(n)). For
point-wise features, the outputs are equivariant to per-
mutation: Sg™(Y') = (Yo (1 - - -, Yo(n))- For global
features, the outputs are invariant: SJV(y) = y.

Based on these definitions, it is clear that invariance is
a special case of equivariance. In this paper, we use both
of the terms “equivariance” and “invariance” to distinguish
cases, but sometimes we also use “equivariance” as a gen-
eral concept that implies both equivariance and invariance.

3.3. Intuition: Inherent Orientations of Points

One of the key intuitions behind our method is that: each
point in a point cloud has an inherent orientation when
considering its context, although an individual point itself
is fully symmetric. As shown in 4, the seat of the chair
has at least two inherent orientations: “UP” and “FRONT”
— “UP” is the orientation to which the seat faces and
“FRONT” is the direction opposite to the back of the chair.
If the chair is represented as a point cloud, then points on
the seat inherit these orientations, and we can denote the
orientation using a rotation matrix O; where we assume
the first and second column vectors represent “UP” and
“FRONT”. These rotation matrices are naturally equivari-
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Figure 2. An illustration of the concept “inherent orientation”.
The coordinate of the yellow dot is 1, and the coordinate of the
black dot is &>. The arrows are two basis vectors of the black dot’s
inherent orientation denoted as Os. The yellow dot’s position rel-
ative to &2 and O2 keeps unchanged despite the global rotation R.

ant to the global rotation of the chair. Assuming point 7 is
on the seat and point j is any other point in the point cloud,
then O] (x; — x;) essentially converts the difference of two
points’ global coordinates to the relative position of j to ¢ in
terms of the inherent orientation of ¢. The first component
of O] (x; — x;) indicates the height of point j relative to
the seat and the second component represents how far is the
point in front of the chair. Therefore, O (x; — ;) is in-
variant to the pose of the chair and can go through arbitrary
transforms without breaking invariance. This concept is il-
lustrated in Figure 2. Notice that no matter how the chair
rotates, the relative coordinate of the yellow circle with
respect to the FRONT-UP orientation remains unchanged.
However, in most real-world applications, we have no prior
knowledge about the orientation for each point. Therefore,
it is necessary to design a network that can learn orienta-
tions for each point in an end-to-end fashion.

4. Method

The central idea of this work is to learn orientations for
message passing. This section elaborates on each building
block, organized as follows:

* In Section 4.1, we detail the principle of orientation
learning and propose a neural network architecture to
learn orientations.

¢ In Section 4.2, we show how the designed architecture
could be applied to the learned orientations to message
passing networks and how it preserves equivariance.

¢ In Section 4.3, we formulate the readout layers for es-
timating both equivariant and invariant properties.

4.1. Learning Orientations

As introduced in Section 3.3, the orientation of a point
is inherent and contextual. Point-wise orientations can be
represented as orthogonal orientation matrices O; € R3*3
(¢ =1,..., N). Therefore, in order to learn effective point-
wise orientations, there should be a sub-network that (1)
captures the context of each point, (2) outputs orthogonal

orientation matrices, and (3) is equivariant to the global
pose. To fulfill objective (1) and (3), we employ a vari-
ant of GVP-GCN [10,27] (a vector-based graph neural net-
work) over the k-nearest-neighbor graph of the point cloud
to estimate two equivariant vector features for each point.
Subsequently, we leverage on the Gram-Schmidt process to
construct orientation matrices from the vectors [44], which
fulfills objective (2). Below is the description of the net-
work for learning orientations:

Let X = (x1,...,xy) denote the input point cloud.
The point cloud, with all zeros as its initial scalar and vector
features, is passed to the first vector-based graph convolu-
tion layer denoted as V-GConv:

(HY v « V-GConv, (X, 0,0). )
Here, H® (hgl), cee hg\p) is the scalar

v =
denote its vec-

features of the point cloud, and

1 1 1 1
|:(’U§1)7’U§2), U P ('u](\,i,'u](\,%, .. )}
tor features. Next, the scalar and vector features are
iteratively updated through a stack of V-GConv layers:

(HY, V)  V-GConv,(X, H*D VD) (3)

The final layer outputs two vectors for each point denoted
as V) = [(U%)w%)), e (v](\fl),v](@)} Details about
V-GConv layers are presented in the supplementary mate-
rial.

We then employ Gram-Schmidt process to normalize
and orthogonalize the two vectors for each point:

oD
Uil < —( s “)
B
Ujy U,(QL) - <’U£QL)7U1'1>UZ'1» )
!
Uiy 2 (6)

Here (-, -) is the inner product of two vectors. Finally, we
construct point-wise orientation matrices by combining the
two orthogonal unit vectors (w1, u;2) and their cross prod-
uct:
Oi<— [uil,uig,uﬂ XU»L'Q] (221,,N) (7)
Orientation matrices constructed in this way fulfill the
three requirements summarized at the beginning of this sec-
tion. In particular, the V-GConv layers enable the learned
orientations to sense their contexts and guarantee equivari-
ance. The Gram-Schmidt orthogonalization and Eq.7 en-
sure the orthogonality of learned orientations. The equiv-
ariance of learned orientations is stated formally in the fol-
lowing proposition:
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Figure 3. An illustration of message passing with orientations and
its equivariant nature. Note that a proper rotation matrix R should
satisfy the constraint RTR = I.

Proposition 1. The proposed network for learning orien-
tations, denoted as for(x1,...,xNn) = (O1,...,0n), is
equivariant to rotation and invariant to translation, satisfy-
ing for (Rx1+t,...,Rey +t) = (ROq,...,ROy).

Proof. See the supplementary material. O

Extension: Learning Global Orientations The network
for learning point-wise orientations can be adapted for
learning global orientations. We first construct a hierarchy
of the point cloud: X(L) ={z} c XUtV Cc ... C
X® C X, where & = £ Y ;. The ¢-th V-GConv layer

(¢ < L) finds the k-nearest-neighbors of a point zr:( )
X1 to aggregate information. The scalar and vector
features of & is obtained via global pooling over X (Z~1)g
features. Finally, the orientation constructed from &’s vec-
tors feature serves as the global orientation Ogjop. As the
geometric center & is equivariant, it is straightforward to
see that Ogiop is invariant to translation and equivariant to
rotation.

4.2. Equivariant Message Passing with Learned
Orientations

Typical message passing layers for point clouds use co-
ordinate differences x; —x; to compose the message passed
from one point to another. They can be formulated in the
following general form:

D Agg H (R0 ;- @), ®)
JEN (D)

where Agg is a permutation-invariant aggregation operator
(common choices include max, sum, and mean). H(-) is an
arbitrary neural network such as an MLP. To achieve invari-
ance, we project x; — x; using the learned orientation O;

and rewrite the formula as:
R Agg H (hﬁ.‘),h;f),og(wj - aci)> )

JEN (D)

By applying O] to x; — x;, we decouple the coordinate
differences to the pose of the point cloud — the rotated rel-
ative position O] (x; — ;) is invariant to global rotations

of the point cloud. Figure 3 illustrates this message passing
scheme. Formally, we have:

Proposition 2. Under the assumption that (O1,...,0n)
comes from an equivariant function g satisfying g(RX +
t) = (RO,...,ROy), and that H comes from an in-
variant function h satisfying h(RX + t) = H, the mes-
sage passing formula in Eq.9, denoted as f,,(,f,), is invariant
to rotation and translation and satisfies f,%) (RX +t) =
w (X).
Proof. See the supplementary material. O
Notice that the output feature hl(-ul) is invariant to ro-
tations despite the form of . This allows arbitrary flex-
ible network design for H, while previous work imposes
strong prior assumptions on H such as the linear combina-
tion of vectors, handcrafted invariant measures, or spherical
harmonics filtering. In addition, projecting x; — x; using
O] involves the inner product between x; — x; and O]’s
column vectors which explicitly encodes angular geometric
information.

Augmented Message Passing Networks In this section,
we demonstrate how to endow classical point-based mes-
sage passing networks with equivariance by using RS-CNN
and DGCNN as examples.

RS-CNN. The message passing formula of vanilla RS-
CNN is:

Tij < XTj — T4, (10)
R (M ll, i) © B 1
(e e (M (gl rg) 0 B) A

where max denotes the max pooling operation, M is an
MLP network, and © denotes element-wise multiplication.
We can rewrite RS-CNN by incorporating Eq.7 as the fol-
low:

hg“l) — max (M

s (M(J0Tryl.0Try) o B”) - 12)
In vanilla RS-CNN, the initial point-wise features hgo) are
set to the points’ 3D coordinates, which would break equiv-
ariance in our setting. As a remedy, we can either initialize
hz(-o) with a constant or coordinates aligned to the global
orientation Ogjop.

DGCNN. The formulations of the first and subsequent
layers of vanilla DGCNN are:

hit max )J(MO( — T, i), (13)
JjE €T;

B e max o (M(rl —h BD)), 4
JEN(R{")



where o is the activation function and M, is a MLP layer.
To obtain the equivariant property, we modify Eq.13 to:

) Mo(OT (z; — x;))) . 15
; %je%a(‘):;i)a( 0(Of (zj — x:))) (15)

Here, we ignore x; from the message passing formula, but
we can still apply Ongob to x; to decouple the point’s coor-
dinate from global rotation.

The above formulations are kept simple for clarity, we
introduce the following extensions that may further increase
the power of the network:

Extension 1: Multiple Orientations The relative coordi-
nates can be projected using multiple orientation matrices.
Differently projected relative coordinates can be concate-
nated to feed to the message network H (-).

Extension 2: Incorporating Global Information In some
cases, global spatial information can be useful. We can
project global coordinates using Oyop to obtain global in-
variant canonical coordinates and use them as point-wise
invariant features.

4.3. Estimating Equivariant and Invariant Proper-
ties

So far, we have introduced how to extract equivariant
point-wise features in previous sections. The last step is to
predict properties based on the learned features. We divide
properties into two classes: invariant properties and equiv-
ariant properties. For example, invariant properties include
the category of a point cloud, point-wise semantics, and so
on. They are independent of the global pose of the point
cloud and therefore belong to the first case in Section 3.2.
Equivariant properties such as normal vectors and velocities
rotate together with the global rotation, and therefore they
belong to the second case discussed in Section 3.2.

Invariant Property Estimation Point-wise features out-
put by the proposed message passing layers are already in-
variant according to Propos.2. Therefore, to predict point-
wise invariant property, we can directly feed the features
into an arbitrary neural network (commonly an MLP) to es-
timate the property. For global properties, we can perform
pooling operations over all the features. The pooled global
features are clearly invariant and we can safely feed it to a
neural network to estimate global invariant properties.

Equivariant Property Estimation The learned point-
wise features are invariant to rotation. Hence, in order to
predict equivariant properties, we leverage on the learned
orientations again. Specifically, we first use an MLP to
transform point-wise features to 3D vectors. Then, we ap-
ply the orientations to the vectors to obtain the equivariant

vector properties. These two steps can be formulated as:

p; « MLP (hE“) : (16)
e; +— O;p;, a7

where e; is the desired equivariant for point ¢. The equiv-
ariance of e; is stated formally in the following proposition:

Proposition 3. Under the assumption that (O, ...,0p)
comes from an equivariant function g satisfying g(RX +
t) = (RO,,...,ROy), and that H'") comes from an
invariant function h satisfying h(RX + t) = H"), The
property estimator [y, defined by Eq.16 and Eq.17 is
equivariant to rotation and invariant to translation, satis-
ing forop (RX + 1) = Rfprp (X).

Proof. See the supplementary material. O

By combining proposition 1, 2, and 3, we can easily see
that message passing networks in the proposed framework
are equivariant.

5. Experiments

We evaluate our method on three types of tasks including
point cloud analysis (Section 5.1), physical modeling (Sec-
tion 5.2), and analytical study (Section 5.3). In the point
cloud analysis, the shape classification task and part seg-
mentation task examine the method’s capability of predict-
ing global and point-wise invariant properties. The normal
estimation task evaluates the model’s ability on estimating
equivariant properties. The task of physical modeling is to
predict particle velocities in an n-body system, which heav-
ily relies on the model’s equivariance to achieve accurate
predictions. In the end, we provide more insight into the
behavior of our model by visualizing learned orientations
of different 3D objects.

5.1. Point Cloud Analysis
5.1.1 Classification (Invariant)

A point cloud’s category is its invariant property. This task
can demonstrate the model’s capability of learning invariant
representations.

Setup We use the ModelNet40 [36] dataset and its offi-
cial train-test split for the point cloud classification task.
The dataset consists of 12,311 shapes from 40 different cat-
egories, of which 2,468 shapes are left out for test. Each
point cloud contains 1,024 points.

Following the setup in the previous work [5, 18,39], we
adopt three different train-test rotation settings: (1) z/z:
both training and test point clouds are rotated around the
gravitational axis; (2) z/SO(3): training point clouds are
rotated around the gravitational axis and test point clouds



Table 1. Point cloud segmentation results in the loU (Inter-over-Union). In z/SO(3) setting, our model outperforms other baselines on 11

out of 16 shapes.

z/SO(3) plane bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table
PointNet [23] 404 48.1 463 245 451 394 292 42,6 527 367 212 550 297 266 321 358
PointNet++ [24] | 51.3 66.0 50.8 252 667 277 297 65.6 59.7 70.1 172 673 499 234 438 57.6
PointCNN [20] 21.8 520 521 236 294 182 407 369 511 331 189 480 230 277 386 399
DGCNN [33] 37.0 502 385 241 439 323 237 48,6 548 287 17.8 744 252 241 431 323
ShellNet [41] 558 594 49.6 265 403 512 538 528 592 418 289 714 379 491 409 373
RI-Conv [40] 80.6 80.0 70.8 688 868 703 873 847 718 80.6 574 912 715 523 665 784
GC-Conv [39] 809 8.6 810 702 884 706 8.1 872 81.8 789 587 910 779 523 66.8 80.3
RI-Fwk. [18] 814 823 863 753 885 728 903 821 813 819 675 926 755 548 751 789
Ours 817 790 850 781 897 765 916 859 81.6 821 67.6 95.0 796 644 769 80.7

Table 2. Consine distance between the predicted and ground truth
normals. Our model outperforms all the baselines by a clear mar-
gin. In addition, compared to non-equivariant baselines, our model
shows consistent performance thanks to equivariance.

Methods | z/z  2/SO(3) SO(3)/SO(3)
PointNet++ [24] | 0.34  0.81 0.55
RS-CNN [21] 026  0.83 0.50
DGCNN [33] 029 032 0.22
RI-Conv [40] 1.33 1.30 1.30
GC-Conv [39] | 042 044 0.42
Ours | 020 0.20 0.20

Table 3. Classification accuracy on ModelNet40. The upper rows
are non-equivariant models, and the lower rows are equivariant
models. The performance of our model is on par with equivariant
baselines.

Methods | z/z  z/SO(3) SO(3)/SO(3)
PointNet [23] 859 196 74.7
PointNet++ [24] | 91.8 284 85.0
RS-CNN [21] 90.3 487 82.6
DGCNN [33] 90.3  33.8 88.6
RI-Conv [40] 86.5  86.4 86.4
GC-Conv [39] | 89.0  89.1 89.2
Ours-RSCNN | 87.6  87.6 87.5
Ours-DGCNN | 884 884 88.9

are rotated arbitrarily. This setting examines the model’s
quality of equivariance-by-construction. (3) SO(3)/SO(3):
both training and test point clouds are rotated arbitrarily.

Results We compare our model with both equivariant and
non-equivariant baselines. Table 3 shows the test classifi-
cation accuracy of different methods. Our model achieves
competitive performance compared to other baseline mod-
els.

5.1.2 Part Segmentation (Invariant)

Point-wise labels are also an invariant property of a point
cloud. This task can examine the model’s performance on
modeling invariant detail properties.

Setup We evaluate the models on the ShapeNet [37]
dataset which consists of 16 categories with 16,881 shapes,
and are labeled in 50 parts in total. Following the con-
vention, we sample 2,048 points for each shape. We use
two train-set rotation settings for this task: z/SO(3) and
SO(3)/SO(3). Our model employs the equivariant adapta-
tion DGCNN (see Section 4.2) as the backbone. We calcu-
late the IoU (Inter-over-Union) metric to measure the seg-
mentation quality for each category.

Results Table 1 summarizes the quantitative comparisons
with baseline methods in z/SO(3) setting. The results of
SO(3)/SO(3) can be found in the supplementary material.
Our model outperforms all the baseline models on 12 out of
16 categories in z/SO(3) setting and 10 of 16 categories in
SO(3)/SO(3) setting. This improvement demonstrates that
our equivariant model is effective in learning fine-grained
details.

5.1.3 Normal Estimation (Equivariant)

Normal vectors are equivariant property of a point cloud
as they rotate together with the global rotation of the point
cloud. This task tests the models’ capabilities of modeling
equivariant properties.

Setup We validate our model and other baselines using
ModelNet40 [36], where each point in the point cloud is
labeled with a 3D normal vector. We use the same data
split and rotation settings as the ones used in the classifi-
cation task. Our model uses the equivariant adaptation of
DGCNN (see Section 4.1 for detail) as the backbone net-
work. Hyper-parameters and other implementation details
are put to supplementary materials.

Results Table 2 shows the test cosine-distance errors (1 —
€08(Nyrue; Mpred)) [39] of all the methods to be compared on



Table 4. Mean squared errors (MSE) of predicted future coordi-
nates in N-body system modeling task.

Methods ‘ 10 Particles 20 Particles
Linear(vel) [27] 0.339 0.408
GNN [14] 0.183 0.256
SE(3) Tr. [7] 0.351 0.371
TEN [31] 0.236 0.273
EGNN [27] 0.126 0.212
Ours ‘ 0.103 0.206

the normal estimation benchmark. It is obvious that the per-
formance of other non-equivariant models degrades when
we apply more flexible rotation on the point clouds. Thanks
to the equivariance, our model presents consistency of per-
formance on different settings of train-test rotation, and out-
performs both non-equivariant and equivariant baselines by
a clear margin. This result reveals the inherent general-
izability of our model with respect to arbitrary poses and
confirms the benefit of using equivariant models to estimate
equivariant properties.

5.2. N-Body System Modeling

Modeling a dynamic particle system is a fundamental
yet challenging task in many other research areas. It is a
also prototype task of many other specific tasks in various
domains, such as molecule simulation. Though controlled
by simple physical rules, N-body dynamic systems exhibit
complex dynamics and it is expensive to predict their future
states solely based on simulation. Therefore, the goal of this
task is to predict each particle’s future states (position and
velocity) based on its current states.

Setup We test our model and baselines on two systems:
10-particle system and 20-particle system. For each sys-
tem, we run the simulation program provided by [7] to col-
lect particle trajectories. We collected 3,000 trajectories
for training and 2,000 for test. Each trajectory has 1,000
timesteps. The target is to predict the coordinates of all
the particles after 1,000 timesteps, given their current posi-
tions, velocities, and types (positively charged or negatively
charged). We use the mean squared error (MSE) of the
predicted future positions as the evaluation metric. Hyper-
parameters and other implementation details of our model
are put to supplementary materials. Our baselines include a
simple linear model introduced in [27], a non-equivariant
graph neural network model [13], as well as equivariant
models including tensor field networks [31], SE(3) trans-
forms [7], and EGNN [27].

Results As shown in Table 2, our model exhibits competi-
tive performance, suggesting its power in modeling physical
interactions among points.

Airplane Uil U2

<
<
=

Figure 4. Left: Input point clouds. Middle & Right: The first and
second column vectors of learned orientations in the classification
model.

5.3. Visualizing Orientations

We visualize two examples of learned orientations from
the point cloud classification model in Figure 4. We find
that the learned orientations are correlated with the global
structure. For example, the first orientation vectors (red ar-
rows) on the airplane’s wings and tails head to the direction
to which the wings and tails stretch and the second orienta-
tion vectors (green arrows) are perpendicular to the wings.
In addition, the first orientation vectors (red) on the chair’s
both front legs consistently head to the front direction, indi-
cating the learned orientations’ awareness of structural sim-
ilarities.

6. Conclusions and Limitations

In this paper, we introduce a scheme for equivariant point
set analysis. The core ingredient is to learn point-wise ori-
entations and project neighbor coordinates using the learned
orientation when aggregating information. By extensive ex-
periments, we demonstrate our model’s effectiveness and
generality.

However, the proposed method requires an additional
sub-network to estimate point-wise orientations. This is a
non-negligible overhead and it is important to reduce the
cost of orientation learning. Another concern of the method
is its robustness. It is unclear to what extent the learned ori-
entations are vulnerable to noisy data, which is inevitable in
real-world settings. It is necessary to study the robustness
in future work. Lastly, this paper only demonstrates few ap-
plications, it would be valuable to examine the method in
other more challenging tasks such as molecular modeling.

Acknowledgement

This work was supported by National Key R&D Program
of China No. 2021 YFF1201600.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic
parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1534-1543, 2016. 1

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger,
Jonathan P Mailoa, Mordechai Kornbluth, Nicola Molinari,
Tess E Smidt, and Boris Kozinsky. Se (3)-equivariant graph
neural networks for data-efficient and accurate interatomic
potentials. arXiv preprint arXiv:2101.03164, 2021. 3

Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumbhold, Jamie Shotton, and Carsten Rother. Learning
6d object pose estimation using 3d object coordinates. In
European conference on computer vision, pages 536-551.
Springer, 2014. 2

Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas Guibas. Vector neurons:
A general framework for so (3)-equivariant networks. arXiv
preprint arXiv:2104.12229, 2021. 2,3, 6

Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:
Global context aware local features for robust 3d point
matching. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 195-205. Computer Vision
Foundation / IEEE Computer Society, 2018. 2

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. Se (3)-transformers: 3d roto-translation equivariant
attention networks. Advances in Neural Information Pro-
cessing Systems, 33, 2020. 1, 3, 8

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 1

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International conference on machine
learning, pages 1263-1272. PMLR, 2017. 1, 2

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael
John Lamarre Townshend, and Ron Dror. Learning from
protein structure with geometric vector perceptrons. In In-
ternational Conference on Learning Representations, 2020.
2,3,4,11

Mor Joseph-Rivlin, Alon Zvirin, and Ron Kimmel. Momen
(e) t: Flavor the moments in learning to classify shapes. In
Proceedings of the IEEE/CVF international conference on
computer vision workshops, pages 0-0, 2019. 3

John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvu-
nakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021. 1

[13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max
Welling, and Richard Zemel. Neural relational inference for
interacting systems. In International Conference on Machine
Learning, pages 2688-2697. PMLR, 2018. 8

Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 8

Johannes Klicpera, Janek Grof3, and Stephan Giinnemann.
Directional message passing for molecular graphs. In Inter-
national Conference on Learning Representations, 2019. 1
Johannes Klicpera, Janek Grof3, and Stephan Gilinnemann.
Directional message passing for molecular graphs. arXiv
preprint arXiv:2003.03123, 2020. 3

Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Mat-
sushita. A closer look at rotation-invariant deep point cloud
analysis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 16218-16227, 2021.
3

Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu,
Daniel Cohen-Or, and Pheng-Ann Heng. A rotation-
invariant framework for deep point cloud analysis. IEEE
Transactions on Visualization and Computer Graphics,
2021. 6,7,13

Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn
Abbott, and Shuran Song. Category-level articulated object
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
3706-3715, 2020. 2

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. Advances in neural information processing systems,
31:820-830, 2018. 2,7, 13

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8895—
8904, 2019. 2,7

Adrien Poulenard and Leonidas J Guibas. A functional ap-
proach to rotation equivariant non-linearities for tensor field
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13174—
13183, 2021. 3

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652—660,
2017.2,7,13

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in Neural Information
Processing Systems, 30,2017. 1,2,7, 13

Zhuoran Qiao, Anders S Christensen, Matthew Welborn,
Frederick R Manby, Anima Anandkumar, and Thomas F
Miller III. Unite: Unitary n-body tensor equivariant net-
work with applications to quantum chemistry. arXiv preprint
arXiv:2105.14655, 2021. 3

Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsu-
pervised geometry-aware representation for 3d human pose



(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

estimation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 750-767, 2018. 2

Victor Garcia Satorras, Emiel Hoogeboom, and Max
Welling. E (n) equivariant graph neural networks. arXiv
preprint arXiv:2102.09844, 2021. 2,4, 8

Kristof T Schiitt, Huziel E Sauceda, P-J Kindermans,
Alexandre Tkatchenko, and K-R Miiller. Schnet-a deep
learning architecture for molecules and materials. The Jour-
nal of Chemical Physics, 148(24):241722,2018. 1, 3
Kristof T Schiitt, Oliver T Unke, and Michael Gastegger.
Equivariant message passing for the prediction of ten-
sorial properties and molecular spectra. arXiv preprint
arXiv:2102.03150, 2021. 2

Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara
Sabour, Soroosh Yazdani, Geoffrey Hinton, and Kwang Moo
Yi. Canonical capsules: Unsupervised capsules in canonical
pose. arXiv preprint arXiv:2012.04718, 2020. 2

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field
networks: Rotation-and translation-equivariant neural net-
works for 3d point clouds. arXiv preprint arXiv:1802.08219,
2018. 1,3, 8

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object
coordinate space for category-level 6d object pose and size
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2642—
2651, 2019. 2

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1-12,2019. 1,2, 7, 13

Maurice Weiler, Mario Geiger, Max Welling, Wouter
Boomsma, and Taco Cohen. 3d steerable cnns: Learning
rotationally equivariant features in volumetric data. arXiv
preprint arXiv:1807.02547, 2018. 3

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9621-9630, 2019. 2

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912-1920, 2015. 1, 6, 7

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (ToG), 35(6):1-12, 2016. 7

Zhiyuan Zhang, Binh-Son Hua, Wei Chen, Yibin Tian, and
Sai-Kit Yeung. Global context aware convolutions for 3d
point cloud understanding. In 2020 International Conference
on 3D Vision (3DV), pages 210-219. IEEE, 2020. 2
Zhiyuan Zhang, Binh-Son Hua, Wei Chen, Yibin Tian, and
Sai-Kit Yeung. Global context aware convolutions for 3d
point cloud understanding. In 2020 International Conference
on 3D Vision (3DV), pages 210-219. IEEE, 2020. 6, 7, 13

(40]

(41]

[42]

[43]

[44]

Zhiyuan Zhang, Binh-Son Hua, David W Rosen, and Sai-Kit
Yeung. Rotation invariant convolutions for 3d point clouds
deep learning. In 2019 International Conference on 3D Vi-
sion (3DV), pages 204-213. IEEE, 2019. 7, 13

Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shellnet:
Efficient point cloud convolutional neural networks using
concentric shells statistics. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1607—
1616, 2019. 7, 13

Chen Zhao, Jiaqi Yang, Xin Xiong, Angfan Zhu, Zhiguo
Cao, and Xin Li. Rotation invariant point cloud classifica-
tion: Where local geometry meets global topology. arXiv
preprint arXiv:1911.00195,2019. 2

Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele
Menegatti, Leonidas Guibas, and Federico Tombari. Quater-
nion equivariant capsule networks for 3d point clouds. In
European Conference on Computer Vision, pages 1-19.
Springer, 2020. 2

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5745—
5753, 2019. 4



Supplementary Material

Equivariant Point Cloud Analysis via Learning Orientations for Message Passing

A. Orientation Learning Networks

This section elaborates on the neural network architecture for learning orientations described in Section 4.1.

The building block of the network is GVP-based graph convolutional networks (GVP-GCN) [10]. To understand GVP-
GCN, we first briefly introduce GVP (geometric vector perceptron). GVP is a generalization of the traditional perceptron (a
linear layer followed by a non-linear function). While traditional perceptrons take only an array of scalar features as input
and outputs another array of scalar values, GVP takes an array of scalars and an array of 3D vectors as input, and output
another array of scalars and array of vectors:

(s',V') <~ GVP(s,V), wheres=[s1,...,8,] ER"and V = [w;,...,v,,] € R¥*™, (18)
The most relevant property of GVP is its equivariance to rotation:
(s, RV') + GVP(s, RV). (19)

The above formulation and equivariance property is sufficient for building the rest part of our model. Therefore, if the reader
is interested in more technical details and formal proofs about GVP, we refer the reader to [10].

Next, we introduce GVP-based graph convolutional networks (GVP-GCN). Let h; denote the scalar features, V; denote
the vector features of point 4, and h;;, V;; denote the scalar and vector of edge ij. The message passing step of GVP-GCN
is defined as:

(P(i—jys Viieejy) == GVP (concat(h;, h;;), concat(V;, Vi;)) (20)
1
(b}, V) « (h;, V;) + 0] Z (R(iy)> Viij)), 2
JEN(3)
(R, V™) <= (h;, V/') + GVP(h;, V). (22)

For short, we denote the above message passing scheme as (h{", V;°") <— GVP-GConv (h;, h;j, V;, V;;). As provenin [10],
GVP-GConv is equivariant to rotation:

(A", RV,™") « GVP-GConv(h;, hi;, RV;, RV;). (23)

To learn orientations from point clouds, we modify GVP-GConv according to the characteristics of 3D point clouds.
Specifically, we assign distance to the scalar feature of edges and coordinate difference to the vector feature of edges:

hij = [llzi — z;], Vij = [(x: — ;)] (24)

The message passing formula over the point cloud (denoted as V-GConv) is then formulated as:

(P(iejys Viiejy) == GVP (concat(hy, [||z; — x;||]), concat(V;, [(z; — ;)])) , (25)
1
(hi, Vi) = (hi, Vi) + == > (hggy, Vi), o
JEN(3)
(R V) (h, V) + GVP(RL. V). 7

The formula involve point-wise coordinates X, scalar and vector features H, V', so we denote the layer as (h;"“, Vi‘)m) —
V-GConv(X, h;, V;) for short. To ensure equivariance, we assign all zero as the initial scalar and vector features of the
point cloud, as defined in Eq.2.

B. Proofs

In this section, we prove the three propositions in Section 4.



Proposition 1. The proposed network for learning orientations, denoted as for(x1,...,xN) = (O1,...,0nN), is equivari-
ant to rotation and invariant to translation, satisfying f,; (Rx1 +t,..., Rey +t) = (RO,..., ROy).

Proof. First, we show the equivariance of the message passing formula defined by Eq.25-27. Let R € SO(3) denote an
arbitrary proper rotation matrix and ¢ € R3 denote an arbitrary vector in the 3D space.
According to the equivariance of GVP (Eq.19), Eq.25 is equivariant by:

(R(iej)s RV(iej)) = GVP (concat(hy, [|z; — z;]]), concat(RV;, [R(z; — x;)]))
= GVP( (hi, [ R(zi — x;)[]]), concat( RV, [R(z: — ;)]))
= GVP (concat(h;, [||Rx; +t — Rx; — t||]), concat(RV;, [Rx; +t — Rx; — t]))
( (hi, [

= GVP (concat(h;, [||(Rx; +t) — (Rxz; + t)||]), concat(RV;, [(Rx; +t) — (Rx; +t)]))

h
concat(h

Next, it is straightforward to see that Eq.26 is equivariant as it simply sums up vectors, and Eq.27 is equivariant by Eq.19.
By chaining the equivariance of Eq.25-27, we can see a V-GConv layer is equivariant. That is, formally:

(", RV") < V-GConv(RX +t, h;, RV;).
In addition, it is easy to see that stacking multiple V-GConv layers results to an equivariant function:

(h{" RV")) « V-GConvy(RX +t,V-GConv,_ (RX +t,(... V-GConv{ (RX + t, A", RV") .. ))).

Now, the problem is how to choose initial scalar and vector features h§°), Vi(o) for an input point cloud X . From the above
equation, we can see that the initial vector features V'(°) should be aligned to the rotation R in order to preserve equivariance.
However, in most settings, the pose of the point cloud (parameterized by R and t) is unknown. Therefore, we simply set
V(9 = 0 which is irrelevant to the global pose®. As for the initial scalar features H () = [hgo), cee hg\?)], they should be
invariant to the global pose, so we also simply set them to 0. Setting both initial scalar and vector features to zero leads to
the design of the first layer of the orientation learning network (Eq.2).

So far, we have shown that our designed stack of V-GConv layers is equivariant. Note that the final layer of the network
outputs two vectors for each point. They are equivariant to rotation and invariant to translation according to the above results.

Next, we consider the equivariance of the Gram-Schmidt process for constructing orientation matrices (Eq.4-6). For Eq.4,
we have:

L L
~ Rvgl) _ R’ugl)

Uil

= IR
IRoS | o)

i1,

and for Eq.6, we have:

~/

u,;
~ . 12
U2 = =, 7 =

R’UZ(QL) — <R’UZ(2L), Ruﬂ)Ru“ =R |:’UZ(2L) — <’U£2L)7ui1>ui1 = Ruig.

[l
These prove the equivariance of Eq.4-6. For Eq.7, we show its equivariance by:
b: = [RuihRui%Ruil X Ruiz] = R[uil»ui%uil X Ui2] = RO;.

Finally, as the whole orientation learning network for is a composite of the V-GConv network and the Gram-Schmidt-
based matrix construction process. Therefore, the network, denoted as fo, is equivariant to the rotation and invariant to
translation, satisfying fo (Rx1 +¢,..., Ry +t) = (ROq,..., ROyN). O

Proposition 2. Under the assumption that (O1,...,OyN) comes from an equivariant function g satisfying g(RX +t) =
(RO,...,ROy), and that H comes from an invariant function h satisfying h(RX + t) = H, the message passing

Sformula in Eq.9, denoted as f,gf), is invariant to rotation and translation and satisfies f,,(,f,) (RX +t) = ,S,f,) (X).

3There are some other choices for V' (9) such as local principle components of each point. These features align with the global rotation and can be used
as initial vector features. In this work, we choose the simplest solution.



Proof.

R = FED(RX +t) = Agg H(h 7h2 (RO)! (Rx; +t) — (R:vi+t)))

JEN (D)

— Agg H(h“> h" OTR*R(x; L))
FJEN(4)

= Agg H (h f h(z ,O] (z; —:cz)>
JEN ()

= fipD (X) = B

Note that initial point-wise features h;o) (1 = 1,...,N) are all set to zero, which are invariant to X. Hence the above
equation hold. When ¢ > 0, by induction, hl(.efl) (¢=1,...,N) are invariant to X, so the equations also hold.

O
Proposition 3. Under the assumption that (O1,...,OnN) comes from an equivariant function g satisfying g(RX +t) =

(RO, ..., ROy), and that H'") comes from an invariant function h satisfying h(RX + t) = HE), The property esti-
mator fyr, defined by Eq.16 and Eq.17 is equivariant to rotation and invariant to translation, satisfying fp (RX +t) =
R forop (X)-

Proof.

& = forop (RX +t) = RO; MLP(h'")) = Rfyop (X) = Re;.

C. Additional Results

Point Cloud Part Segmentation: SO(3)/SO(3) The following table is supplementary to Table 1 in Section 5.1.2, showing
the part segmentation performance of our model and baselines in SO(3)-train/SO(3)-test setting.

Table 5. Point cloud segmentation results in the IoU (Inter-over-Union). In SO(3)/SO(3) setting, our model outperforms other baselines on
10 out of 16 shapes.

SO(3)/SO3) plane bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table
PointNet [23] 81.6 687 740 703 876 685 889 80.0 749 836 565 716 752 539 694 799
PointNet++ (MSG) [24] | 79.5 716 87.7 70.7 88.8 649 88.8 781 792 949 543 920 764 503 684 81.0
PointCNN [20] 78.0 80.1 782 682 812 70.2 82.0 706 689 808 486 773 632 506 632 82.0
DGCNN [33] 717 718 717 552 873 687 88.7 855 81.8 813 362 860 773 516 653 802
ShellNet [41] 790 79.6 802 641 874 713 888 819 79.1 951 572 912 698 558 73.0 793
RI-Conv [40] 80.6 802 70.7 688 86.8 704 872 843 780  80.1 573 912 713 521  66.6 785
GC-Conv [39] 812 826 816 702 886 706 862 86.6 816 79.6 589 90.8 768 532 672 81.6
RI-Fwk. [18] 814 845 851 750 882 724 90.7 844 803 84.0 688 926 76.1 521 741 80.0
Ours 818 788 854 78.0 896 767 916 8.7 817 821 67.6 950 791 635 765 81.0

Additional Visualization of Learned Orientations Figure 5 and 6 present more examples of learned orientations from
the point cloud classification model. We observe that though not explicitly supervised, the learned orientations are correlated
with the structure of shapes. For example, from the first two rows of Figure 5, we can see that red arrows on the airplane’s
wings and tails head to the direction to which the wings and tails stretch. We also find that the orientations are aware of
structural similarity — the red arrows on chair legs consistently point to the front of the chair. We also note that the learned
orientations are not trivial. An example is the second shape on the bottom row of Figure 6. The red arrows are obviously
correlated to the vase’s surface normals, rather than simply diverge from the center of the vase.
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Figure 5. Green and red arrows indicate the first two column vectors of learned orientation matrices.

Figure 6. Green and red arrows indicate the first two column vectors of learned orientation matrices.
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