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A. Dataset
A.1. Collection Details

Our exocentric images are mainly derived from COCO
[27], and HICO [3]. Besides, we also collect some images

*This work was done during an internship at JD Explore Academy.
†Corresponding author. ‡ Equal contributions.

from PAD [28], OPRA [12] and UCF101 [47]. We choose
images or video frames according to verbs and affordance
categories. Our goal is to capture affordance cues from di-
verse individual differences determined by the object’s in-
trinsic properties, rather than imitating interactions from in-
dividual persons. Therefore, for the video dataset, we select
only a portion of the video frames interacting with the ob-
ject. On the other hand, we download 5, 867 high-quality
free images (2, 112 exocentric images and 3, 755 egocentric
images) from this link, which we retrieve according to the
affordance category as well as the object category, and man-
ually choose the images that satisfy the requirements. More
examples of exocentric and egocentric images are shown in
Fig. 1.

A.2. Annotation Details

For the test set part-level labels, we refer to the OPRA
dataset [12] for the annotation of interaction regions and
the annotation routine from previous visual saliency works
[1, 2, 22]. By observing the interactions between humans
and objects in the exocentric images, we label the egocen-
tric images with points of different densities according to
the probability of interaction between the human and ob-
ject regions. In generating the mask, we apply a Gaussian
blur to each labeled point and normalize it to obtain the af-
fordance heatmaps. More examples of annotations for the
affordance region in egocentric images are shown in Fig. 1.

A.3. Dataset Division

In the “Seen” setting, all exocentric images are used as
the training set, while for egocentric images, we use 3, 022
as training images and 733 as test images. In the “Unseen”
setting, we first select the affordance category containing
several object classes. Twenty-five affordance categories
satisfy the requirements, covering 47 object categories. We
choose 35 classes as the training set and 12 classes as the
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Figure 1. Dataset examples. More examples of exocentric and egocentric images in AGD20K.

test set, as shown in Table 1.
Besides, to explore the model’s predictive performance

for different scales of affordance regions, we split the test
set into “Big” subsets if the proportion of the mask to the
whole image is greater than 0.1, “Middle” subsets if the
ratio is between 0.03 and 0.1, and “Small” subsets for the
remaining part. Most of the test images fall in the “Middle”
subset.

A.4. More Statistical Analysis

Table 2 shows comparisons of the AGD20K dataset with
other affordance-related datasets. Our AGD20K dataset is

unique in that it explicitly takes into account the exocentric
to egocentric viewpoint transformation and considers higher
quality images, richer affordance classes and more complex
scenarios. We count the number of images of object cate-
gories contained under each affordance category in the exo-
centric images (as shown in Fig. 2). It can be seen from this
that the distribution between affordance categories is unbal-
anced and satisfies the characteristics of a long-tailed dis-
tribution. In future work, we will consider further optimiz-
ing the model [9, 21, 26] to obtain better prediction results
for affordance regions based on the data distribution char-
acteristics. Our definition of affordance regions for each of



Table 1. Dataset Division. Under the “Unseen” setting, the training and test sets are divided by object category.

Divide Object Classes

Training set

bottle, keyboard, surfboard, punching bag, scissors,baseball bat,
chair, couch, javelin, oven, suitcase, motorcycle, toothbrush,
wine glass, orange, knife, bowl, skateboard, hot dog, cell phone, discus,
baseball, fork, apple, basketball, tennis racket, snowboard, frisbee,
rugby ball, hammer, badminton racket, microwave, book, carrot, bench

Test set axe, bed, camera, refrigerator, soccer ball, laptop,
broccoli, golf clubs, bicycle, banana, cup, skis

the 36 categories is shown in Table 3, along with the ob-
ject categories contained under each affordance category. It
indicates that the affordance co-relation is independent of
the semantic class of objects and is commonly present in
objects. Specifically, there are co-relations between “Hold”
and most affordances, such as cutting something, swinging
a racket, or pouring a glass of water, all of which require
the presence of a “Hold” position to complete these interac-
tions.

B. Implementation Details

B.1. Metrics

Previous works mainly segmented precise affordance re-
gions [?, 7, 32, 37], while our task considers a weakly su-
pervised setting that predicts the affordance heatmap us-
ing only the affordance category labels. Referring to the
works of Demo2Vec [12], Hotspots [33], and Mlnet [8], we
adopt heatmaps give a better description of the “action pos-
sibilities” (i.e., affordance) and use KLD, SIM, and NSS to
evaluate the probability distribution correlation between the
predicted affordance heatmap and GT.

− KLD [2]: Kullback-Leibler Divergence (KLD) is used
to measure the distribution difference between the pre-
diction map and the target map. Given a prediction
map P and a ground truth map QD, KLD(·) is com-
puted as follows:

KLD(P,QD) =
∑
i

QD
i log(ε+

QD
i

ε+ Pi
), (1)

where ε is a regularization constant.

− SIM [48]: The similarity metric (SIM) measures the
similarity between the prediction map and the ground
truth map. Given a prediction map P and a continuous
ground truth mapQD, SIM(·) is computed as the sum
of the minimum values at each pixel, after normalizing

the input maps:

SIM(P,QD) =
∑
i

min(Pi, Q
D
i ),

where
∑
i

Pi =
∑
i

QD
i = 1.

(2)

− NSS [41]: The Normalized Scanpath Saliency mea-
sures the correspondence between the prediction map
and the ground truth, and it treats false positives and
false negatives symmetrically. Given a prediction map
P and a binary ground truth map QD, NSS(·) com-
putes the average normalized prediction at ground
truth locations:

NSS(P,QD) =
1

N

∑
i

P̂ ×QD
i ,

where N =
∑
i

QD
i and P̂ =

P − µ(P )
σ(P )

.

(3)

µ(P ) and σ(P ) represent the mean and standard devi-
ation of P , respectively.

B.2. Comparison Methods

− Mlnet [8]: Unlike previous works that predict saliency
maps directly from the last layer of the convolution
neural network, the model fuses feature extracted from
different CNN layers. Their method contains three
main blocks: feature extraction CNN, feature encod-
ing network (weighting of low and high features), and
a prior learning network. The method achieves promis-
ing results in all datasets for saliency detection.

− DeepGazeII [24]: Unlike other saliency models,
DeepGazeII does not perform additional fine-tuning of
the VGG features and only trains some output layers
to predict saliency on top of VGG.

− EgoGaze [20]: It is a hybrid gaze prediction model
that exploits both the visual saliency of bottom-up and
task-dependent attention transition and is the first work



Table 2. Statistics of related datasets and the proposed AGD20K dataset. Part: part-level annotation. HQ: high-quality annotation.
BG: the background is fixed or from general scenarios. Exo&Ego: whether to transfer from exocentric to egocentric view. ]Obj: number
of object classes. ]Aff: number of affordance classes. ]Img: number of images.

Dataset Pub Year HQ Part BG Exo & Ego? ]Obj. ]Aff. ]Img.
UMD [32] ICRA 2015 7 3 Fixed 7 17 7 30,000

[44] CVPR 2017 7 3 Fixed 7 17 7 3,090
IIT-AFF [37] IROS 2017 7 3 General 7 10 9 8,835
ADE-Aff [7] CVPR 2018 3 3 General 7 150 7 10,000

PAD [28] IJCAI 2021 3 7 General 7 72 31 4,002
AGD20k (Ours) CVPR 2022 3 3 General 3 50 36 23,816

to explore the attention transition model in the egocen-
tric gaze prediction task and achieves state-of-the-art
results in gaze prediction.

For the three models for saliency detection described above,
we use models trained on the saliency-related datasets for
testing in the same way as [33].

− EIL [29]: Since CAM-based approaches for weakly
supervised object localization (WSOL) highlight only
the most discriminative regions, not the whole ob-
ject. Therefore, this thesis proposes a novel adversar-
ial erasing technique jointly exploring highly response
class-specific areas and less discriminative regions to
obtain a more complete object region.

− SPA [38]: It explores how to extract object structure
information during the training phase of the classifica-
tion network and proposes a structure-preserving acti-
vation (SPA) method that leverages the structure infor-
mation incorporated in the convolutional features for
WSOL.

− TS-CAM [14]: It proposes a token semantic coupled
attention map (TS-CAM) approach that captures long-
range visual dependencies using a self-attention mech-
anism. By introducing a semantic decoupling module,
the semantic-aware tokens and the semantic-agnostic
attention map are combined to jointly leverage seman-
tic and localization information to better localize ob-
ject regions.

For the three weakly supervised object localization mod-
els mentioned above, we only utilize exocentric images for
training. In the main paper, we also conduct experiments
and analyse the effect of using both exocentric and egocen-
tric images on the performance of the weakly supervised
object localization models.

− Hotspots [33]: It is a weakly supervised way to learn
the affordance of an object through video, and affor-
dance grounding is achieved only through action la-
bels.

C. Experiments

C.1. Different Classes

To investigate the performance of the models on differ-
ent affordance categories, we show the results of the KLD
metrics for each category in the “Seen” setting. The experi-
mental results are shown in Table 4. Bold and Underline in-
dicate the best and the second-best scores, respectively. Our
model achieves the best results under most affordance cat-
egories, which demonstrates the superiority of our method
in locating affordance regions. Specifically, our model ob-
tains more accurate results for both the affordance cate-
gories “Hold” and “Cut with”, where there are some co-
relations, demonstrating that our approach can enhance the
network’s ability to perceive and locate affordance regions
by aligning the co-relation matrices of the outputs of the
two views. For affordance categories such as “Pour” and
“Carry”, where the interaction habits of different humans
are quite diverse, our method still outperforms all other
models, illustrating the effectiveness of the affordance in-
variance mining module in extracting affordance-specific
features for affordance area localization. Due to the long-
tailed distribution characteristic of the dataset, we calculate
the means of the KLD metrics for all categories to com-
pare different models from the category balanced perspec-
tive. Our method still outperforms other methods, which
shows that our method can capture affordance-related fea-
tures on most of the categories and achieve better affordance
region localization performance despite the unbalanced data
distribution.

C.2. Different Scales

To explore the capability of the model in localizing affor-
dance regions on objects of different scales, we divided the
test set into three subsets of “Big”, “Middle” and “Small”.
The results are shown in Table 5. Our model outperforms
the other methods in most of the three settings. Most of the
objects in the “Big” subset have a large affordance region,
and the differences in human-object interaction are gener-
ally quite large, making it difficult to fully locate the affor-



Figure 2. Dataset statistics. The statistics of the number of exocentric images in the object category contained under each affordance
category.



Table 3. Category definitions. Definition of the affordance regions in the AGD20K dataset and the object categories contained in each
affordance category.

Class Description Object Class

Beat
The object regions that can be played by beating a surface to produce a
sound.

drum

Boxing The object regions hit by boxing sports. punching bag
Brush with The object regions that can be used to brush the teeth. toothbrush

Carry Regions that interact during moving objects. skateboard, skis, snowboard, surfboard
Catch The interaction region that catches the object process. frisbee, rugby ball, soccer ball
Cut The object region that can be cut. apple, banana, carrot, orange

Cut with The object regions that have the ability to cut other Obj. knife, scissors
Drag The object regions that can be dragged. suitcase

Drink with The regions in which the drinking process interacts with objects. bottle, cup, wine glass
Eat The object regions that can be eaten. apple, banana, broccoli, carrot, orange

Hit Indicates object regions that can be used to strike other objects.
axe, baseball bat, hammer, tennis
racket

Hold Refers to the object regions that can be held in the hand.

axe,badminton racket, baseball bat,
book, bottle, cup, fork, frisbee, golf
clubs, hammer, knife, scissors, skate-
board, snowboard, suitcase, bowl, surf-
board, tennis racket, skis, toothbrush,
wine glass

Jump
The object regions that allow rapid movement by allowing people to
jump on surfaces.

skateboard, skis, snowboard, surfboard

Kick The object regions that can be kicked in direct contact with the foot. soccer ball, punching bag, rugby ball

Lie on
The object regions with a large surface space that allow a person to lie
down.

bed, bench, couch, surfboard

Lift The regions that interact during the lifting of the object. fork
Look out The object regions that can be used for seeing at a distance. binoculars

Open The region contacted during the opening of the object.
book, bottle, microwave, oven, refrig-
erator, suitcase

Pack The object regions that can be used for packing. suitcase
Peel The regions in which objects are peeled. apple, banana, carrot, orange

Pick up The regions that can be picked up. skis, suitcase
Pour The regions that hands interact with during the pouring of liquids. bottle, cup, wine glass
Push The object regions that can be pushed forward. bicycle, motorcycle
Ride The regions contacted during riding. bicycle, motorcycle

Sip
The regions that the mouth contacts with the container during the sipping
process.

cup, wine glass

Sit on The object regions that can be used to sit.
bed, bench, bicycle, chair, couch, mo-
torcycle, skateboard, surfboard

Stick The sharper regions that can pierce into other objects. knife, fork
Stir The object regions that can be used for mixing. bowl

Swing Object regions that a person interacts with by swinging their arm.
badminton racket, baseball bat golf
clubs, tennis racket

Take photo Interaction regions that can take pictures of people. camera, cell phone
Talk on The object regions contacted during calling. cell phone
Text on The object regions that can be used to edit text. cell phone

Throw The object regions that a person uses to throw.
baseball, basketball, discus, frisbee,
javelin, rugby ball

Type on The object regions that can be used for typing. keyboard, laptop

Wash The object regions that are cleaned with water.
bowl, carrot, cup, fork, knife, orange,
toothbrush, wine glass

Write The object regions that can be used for writing. pen



Table 4. Different classes. The test results under the KLD metric for different affordance categories.

Classes Mlnet
[8]

DeepGazeII
[24]

EgoGaze
[20]

EIL
[29]

SPA
[38]

TS-CAM
[14]

Hotspots
[33] Ours

Beat 4.021 1.046 4.388 1.326 9.548 1.547 1.440 1.231
Boxing 4.475 1.413 2.918 1.087 6.554 1.474 1.398 1.270

Brush with 6.215 2.385 4.935 3.003 8.043 2.642 2.154 2.040
Carry 6.228 1.841 3.521 1.799 5.902 1.825 1.556 1.443
Catch 5.356 1.448 3.519 1.019 6.641 1.011 0.917 0.595
Cut 2.947 0.951 3.128 0.970 5.059 1.408 1.078 0.805

Cut with 6.664 2.200 4.389 1.917 3.945 2.179 2.055 1.652
Drag 15.01 4.562 4.827 3.877 7.884 3.764 4.241 4.046

Drink with 4.497 2.067 4.268 2.253 7.683 2.300 1.943 1.748
Eat 2.778 0.944 3.052 1.039 6.400 1.373 0.959 0.819
Hit 8.305 2.168 4.882 2.145 6.141 2.172 1.929 1.787

Hold 6.762 2.071 4.671 2.008 3.006 1.628 1.770 1.594
Jump 5.852 1.876 3.840 2.017 8.454 2.049 1.622 1.579
Kick 4.353 1.169 2.758 0.908 3.277 1.070 1.239 0.914

Lie on 4.767 1.602 2.921 1.377 4.006 1.370 1.566 1.039
Lift 7.922 2.377 4.319 2.269 8.708 2.309 2.038 2.389

Look out 2.348 1.347 3.475 2.267 9.12 1.216 1.402 1.316
Open 7.108 2.172 5.416 1.984 2.892 1.867 1.916 1.512
Pack 3.224 0.816 2.684 1.272 10.85 1.145 1.486 1.002
Peel 3.715 1.021 3.373 1.032 7.594 1.494 1.147 0.742

Pick up 7.481 2.779 3.186 2.608 11.70 2.967 2.751 2.619
Pour 3.945 1.937 3.512 1.943 4.426 2.139 1.809 1.432
Push 4.240 2.757 5.839 3.490 13.38 2.655 2.904 3.000
Ride 2.364 1.812 3.878 2.548 5.730 2.023 2.220 1.890
Sip 3.755 1.794 3.868 1.964 7.284 2.094 1.798 1.564

Sit on 3.491 1.934 4.058 2.240 3.748 1.959 2.161 1.745
Stick 7.977 2.867 7.444 2.976 7.276 2.864 2.635 2.334
Stir 3.032 0.859 3.674 1.406 9.239 1.325 1.126 0.916

Swing 9.248 2.478 6.723 2.486 6.720 2.420 2.178 2.161
Take photo 2.549 1.153 3.939 1.362 7.407 1.468 1.148 0.996

Talk on 5.805 1.269 3.787 2.085 10.24 1.940 1.597 1.426
Text on 3.667 1.381 3.599 1.652 8.039 2.000 1.804 1.356
Throw 5.991 1.536 3.903 1.330 6.743 1.262 1.037 0.817

Type on 2.549 1.125 3.113 1.074 2.144 1.042 0.963 0.503
Wash 5.205 1.499 5.297 2.056 10.62 2.200 1.471 1.397
Write 4.455 2.252 4.120 2.446 6.245 2.386 1.992 1.580
Mean 5.231 1.803 4.095 1.923 7.045 1.905 1.763 1.534

dance region. In the “Small” subset, the region of interac-
tion is generally small and challenging to locate precisely.
Our method has no particular degradation in performance
in either case and still accurately predicts the affordance re-
gion of the object.

C.3. Different Hyper-parameters

We investigate the influence of T on the performance
of the model (as shown in Table 6. The hyper-parameter
T in the ACP strategy has a smoothing effect on the cate-

gory correlation distribution and plays a preservation role
for affordance co-relation information. It shows that the
value of T has a relatively significant impact on the per-
formance of the model, and too large a T may cause harm-
ful effects. We also investigate the effect of the rank r of
the dictionary matrix W in the AIM module on model per-
formance (as shown in Table 7), with different ranks repre-
senting the number of bases of the human-object interaction
subfeatures. The best results are obtained when r = 64. A
smaller r (e.g., 16 or 32) may lead to poor results due to



Table 5. Different scales. We divide the test set into “Big”, “Middle” and “Small” subsets according to the ratio of mask to the whole
image, and test the performance of the model in different scales of objects.

Scale Big Middle Small
Method KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑

Se
en

Mlnet [8] 5.382 0.389 0.375 4.939 0.280 0.640 5.598 0.176 0.704
DeepGazeII [24] 1.216 0.450 0.417 1.742 0.271 0.732 2.718 0.143 0.574

EgoGaze [20] 3.400 0.339 0.235 4.174 0.226 0.376 4.941 0.124 0.328
EIL [29] 1.047 0.461 0.389 1.794 0.284 0.710 3.057 0.123 0.231
SPA [38] 5.745 0.317 0.222 4.990 0.228 0.440 6.076 0.118 0.297

TS-CAM [14] 1.039 0.424 0.166 1.814 0.248 0.401 2.652 0.132 0.352
Hotspots [33] 0.986 0.448 0.408 1.738 0.265 0.672 2.587 0.149 0.683

Ours 0.766 0.533 0.652 1.485 0.322 1.040 2.373 0.175 0.927

U
ne

en

Mlnet [8] 4.441 0.426 0.491 4.554 0.281 0.657 6.058 0.151 0.545
DeepGazeII [24] 0.936 0.464 0.574 1.776 0.269 0.728 2.879 0.128 0.392

EgoGaze [20] 2.902 0.349 0.339 4.100 0.220 0.376 5.292 0.124 0.312
EIL [29] 1.199 0.393 0.271 1.906 0.246 0.482 3.082 0.113 0.116
SPA [38] 8.299 0.259 0.254 6.938 0.186 0.333 7.784 0.095 0.144

TS-CAM [38] 1.238 0.351 0.072 1.970 0.208 0.236 2.766 0.113 0.124
Hotspots [33] 1.015 0.425 0.548 1.872 0.242 0.605 2.693 0.134 0.544

Ours 0.884 0.500 0.728 1.595 0.303 0.945 2.558 0.147 0.692

the number of bases being too small to fully represent the
interactions’ sub-features. And a larger r (e.g., 128 or 256)
may also lead to poor results, possibly due to the redun-
dancy of information caused by the excessive number of
bases. The impact of different exocentric images on model
performance is shown in Table 8, with a relatively signifi-
cant effect on model performance as N increases from 1 to
3. It indicates that the affordance invariance mining module
can capture affordance-specific cues from multiple images,
playing a prominent role in affordance region prediction.

C.4. Difference Attentions

We also explore the impact of different attention mod-
ules on the model performance, where VQ [11] and CD [10]
are two different update algorithms for matrix decomposi-
tion, and Non-local [51], A2Net [6] and Co-attention [11]
are general forms of attention (as shown in 9 ). Our methods
outperform the general attention modules, mainly due to the
complexity of category demarcation in high-dimensional
spaces, i.e., using affordance category labels only as super-
vision would lead to over-parameterization of the general
attention module, making it challenging to learn affordance-
specific features from the complex and diverse interactions.
In contrast, low-rank matrix decomposition maps feature
into a set of compact dictionary bases and reconstruct fea-
tures so that features in high-dimensional space are redis-
tributed in low-dimensional subspaces, effectively solving
the over-parameterization problem. In contrast to other ma-
trix decomposition methods, we constrain W and H to be
non-negative. The reconstruction results are a summation of

bases only, which is more suitable for modeling the realistic
sub-features of human-object interactions. Thus, we use the
non-negative matrix decomposition to model human-object
interaction features more explicitly and obtain affordance-
specific cues.

C.5. Different Visualization Techniques

We also investigate the impact of different visualisa-
tion techniques (Grad-CAM [45], Grad-CAM++ [4], and
XGrad-CAM [4]) on the prediction results (as shown in
Table 10). In the “Seen” setting, the gap between CAM,
Grad-CAM and Grad-CAM++ is not too significant, but in
the “Unseen” setting, Grad-CAM and Grad-CAM++ have
a larger gap with CAM in terms of KLD metrics. While
XGrad-CAM produces results that are far from the ground
truth in both the “Seen” and “Unseen” settings. It suggests
that excessively complex heatmap calculations may lead to
negative effects. In future work, we can improve the visual-
ization technique to obtain more accurate prediction results
according to the characteristics of the affordance region.

C.6. More Visual Results

We also show affordance heatmaps for several rele-
vant domain best models (Hotspots [33], EIL [29] and
DeepGazeII [24]) in the “Seen” and “Unseen” settings (as
shown in Fig. 3 and Fig. 4). These results demonstrate
the effectiveness of our method of explicitly extracting
affordance-specific cues from exocentric interactions and
transferring them to egocentric images, enabling more pre-
cise localization of an object’s affordance region.



Table 6. The influence of T . We investigate the impact of the
hyper-parameter T in the affordance co-relation preserving strat-
egy on model performance.

T=? KLD ↓ SIM ↑ NSS ↑

Se
en

0.5 1.685 0.335 0.837
1 (Ours) 1.538 0.334 0.927

2 1.623 0.328 0.845
3 1.672 0.318 0.810
4 1.737 0.282 0.765

U
ns

ee
n

0.5 1.981 0.272 0.645
1 (Ours) 1.787 0.285 0.829

2 1.903 0.263 0.692
3 1.969 0.252 0.603
4 2.043 0.230 0.519

Table 7. The influence of the rank r. We investigate the influ-
ence of the rank r of the dictionary matrix W in the affordance
invariance mining module on the performance of the model.

Rank r KLD ↓ SIM ↑ NSS ↑

Se
en

16 1.642 0.322 0.832
32 1.598 0.329 0.874

64 (Ours) 1.538 0.334 0.927
128 1.660 0.336 0.843
256 1.647 0.314 0.803

U
ns

ee
n

16 1.873 0.280 0.721
32 1.827 0.277 0.782

64 (Ours) 1.787 0.285 0.829
128 1.886 0.279 0.732
256 1.866 0.276 0.719

Table 8. The influence ofN . We investigate the effect of different
numbers of exocentric imagesN on the performance of the model.

N=? KLD ↓ SIM ↑ NSS ↑

Se
en

1 1.704 0.287 0.811
2 1.623 0.313 0.909

3 (Ours) 1.538 0.334 0.927
4 1.558 0.335 0.896
5 1.617 0.322 0.823

U
ns

ee
n 1 1.926 0.257 0.693

2 1.871 0.277 0.782
3 (Ours) 1.787 0.285 0.829

4 1.835 0.282 0.764
5 1.846 0.263 0.749

D. Related Works

D.1. Weakly Supervised Object Localization

Weakly supervised object localization aims to learn ob-
ject localization given only category labels at the image

Table 9. Different attention. We compare the performance of
using different forms of attention in our model.

Attention Type KLD ↓ SIM ↑ NSS ↑

Se
en

VQ [16] 1.787 0.269 0.595
CD [10] 1.905 0.245 0.377

Non-local [51] 1.831 0.263 0.585
A2Net [6] 2.008 0.232 0.315

Co-attention [11] 1.685 0.279 0.886
NMF (Ours) 1.538 0.334 0.927

U
ns

ee
n

VQ [16] 2.020 0.251 0.561
CD [10] 2.017 0.259 0.575

Non-local [51] 2.021 0.221 0.508
A2Net [6] 1.991 0.259 0.603

Co-attention [11] 1.947 0.253 0.625
NMF (Ours) 1.787 0.285 0.829

level. Zhou et al. [59] use class activation (CAM) tech-
niques to enable a classification-trained network to classify
and localize class-related object regions simultaneously. To
solve the problem of localized discriminative regions or ir-
relevant background regions caused by CAM-based meth-
ods, Singh et al. [46] force the network to focus on other
relevant parts by randomly hiding patches of the training
images. Furthermore, Mai et al. [29] introduce a novel ad-
versarial erasing technique that explores both high response
category-specific regions and low discriminative regions.
Xue et al. [53] propose a divergent activation to learn com-
plementary visual cues. Pan et al. [38] present a higher-
order self-correlation to obtain structure-preserving local-
ization maps. In a recent study, Gao et al. [14] use trans-
former to model long-term dependencies to avoid partial
activation. Unlike the above methods, we consider learn-
ing affordance-specific clues from exocentric interactions
and transferring them to egocentric images, using only the
affordance labels as supervision, which is different from
the general weakly supervised object localization task set-
ting. Moreover, the affordance attribute is not equivalent
to the semantic category of the object. The affordance cate-
gory may contain multiple object categories, while an object
may also have multiple different affordance regions. Con-
sequently, this imposes a significant challenge in extracting
affordance-related features from exocentric images due to
the large variation in human interactions.

D.2. Knowledge Distillation

Knowledge distillation is usually used to distill knowl-
edge from a larger and deeper network of teachers to a
smaller network, mainly for model compression and accel-
eration. It is mainly divided into response-based knowl-
edge, feature-based knowledge, and relationship-based
knowledge [15]. Response-based knowledge [18, 30, 42,



GT Ours [33] [29] [24]
Figure 3. Visualization results. The affordance heatmap predictions obtained by representative models in each domain (Hotspots [33],
EIL [29], DeepGazeII [24]) in the “Seen” setting.

52, 54, 58] is generally learned from the output layer of the
teacher model, and the student model can obtain the infor-
mative dark knowledge contained in the teacher model from
the soft labels. Response-based knowledge is generally
learned from the output layer of the teacher model, and the

student model can obtain the informative dark knowledge
contained in the teacher model from the soft labels. Feature-
based approaches [5, 17, 23, 40, 43, 50, 56] mainly consider
the knowledge of the teacher model from the intermediate
layers, which is an extension of response-based knowledge
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Figure 4. Visualization results. The affordance heatmap predictions obtained by representative models in each domain (Hotspots [33],
EIL [29], DeepGazeII [24]) in the “Unseen” setting.

for thinner and deeper network training. Relation-based
knowledge [25,39,49,55,57] explores the relationships be-
tween different network layers or data samples. While in
this paper, we refer to the technique of knowledge distilla-

tion to transfer the affordance-specific knowledge extracted
from exocentric images to egocentric images. Furthermore,
we introduce the affordance co-relation preserving strategy
to distill the co-relation between affordances from the exo-



Table 10. Different visualization techniques. We compare the
performance of using different visualization techniques to gener-
ate affordance heatmaps in our model.

Visualization KLD ↓ SIM ↑ NSS ↑

Se
en

CAM [59] (Ours) 1.538 0.334 0.927
Grad-CAM [45] 1.545 0.341 0.910

Grad-CAM++ [4] 1.535 0.343 0.915
XGrad-CAM [13] 2.499 0.329 0.801

U
ns

ee
n CAM [59] (Ours) 1.787 0.285 0.829

Grad-CAM [45] 1.930 0.296 0.829
Grad-CAM++ [4] 1.910 0.298 0.839
XGrad-CAM [13] 3.079 0.286 0.696

Figure 5. Failure case. We show the failure case of the model
prediction results in the case of multiple objects or slender objects.

centric branch to the egocentric branch.

E. Limitations
Some failure cases are shown in Fig. 5. The results gen-

erated by our method may activate the intermediate back-
ground areas between multiple objects. For objects with
slender structures, the background-irrelevant regions may
also be activated. In future work, we consider enhancing the
corresponding regions of the affordance class during train-
ing, ignoring the irrelevant background regions, and refin-
ing the generated results in line with the characteristics of
affordance to obtain more accurate predictions.

F. Potential Applications
• Action Anticipation. By predicting the affordance of

the objects that people are interacting with and the ob-
jects in the range of human activities, we can provide
an efficient search space for the anticipation of pos-
sible future actions and improve the accuracy of the
prediction of possible future actions [36].

• Human-Object Interaction. By activating different
regions on the object where the interaction occurs, the
model can guide an agent to focus on the key regions
where human-object interaction can be inferred to im-
prove the prediction accuracy. And it can be used in
zero-shot scenarios to infer the category of human-
object interactions from local region features of objects

even if no examples are seen during the training pro-
cess [19].

• Self-exploration of Agents. Interacting with the en-
vironment is a fundamental skill for embodied intelli-
gence. When an intelligent agent arrives at a new en-
vironment, it should be able to understand the possible
interactions with objects in the environment through
a priori knowledge already acquired (trained models)
and actively interact with the environment to acquire
new knowledge. Such an ability has applications in
robot navigation and robot grasping [31, 34, 35].

References
[1] Zoya Bylinskii, Tilke Judd, Ali Borji, Laurent Itti, Frédo Du-

rand, Aude Oliva, and Antonio Torralba. Mit saliency bench-
mark. 2015. 1

[2] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba,
and Frédo Durand. What do different evaluation metrics tell
us about saliency models? IEEE transactions on pattern
analysis and machine intelligence, 41(3):740–757, 2018. 1,
3

[3] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia
Deng. Learning to detect human-object interactions. In 2018
IEEE winter conference on applications of computer vision
(WACV), pages 381–389. IEEE, 2018. 1

[4] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,
and Vineeth N Balasubramanian. Grad-cam++: General-
ized gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE winter conference on appli-
cations of computer vision (WACV), pages 839–847. IEEE,
2018. 8, 12

[5] Defang Chen, Jian-Ping Mei, Yuan Zhang, Can Wang, Zhe
Wang, Yan Feng, and Chun Chen. Cross-layer distillation
with semantic calibration. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 7028–
7036, 2021. 10

[6] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. A2-nets: Double attention networks.
In NeurIPS, 2018. 8, 9

[7] Ching-Yao Chuang, Jiaman Li, Antonio Torralba, and Sanja
Fidler. Learning to act properly: Predicting and explain-
ing affordances from images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 975–983, 2018. 3, 4

[8] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita
Cucchiara. A deep multi-level network for saliency pre-
diction. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 3488–3493. IEEE, 2016. 3, 7, 8

[9] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9268–9277,
2019. 2

[10] Inderjit S Dhillon and Dharmendra S Modha. Concept de-
compositions for large sparse text data using clustering. Ma-
chine learning, 42(1):143–175, 2001. 8, 9



[11] Qi Fan, Deng-Ping Fan, Huazhu Fu, Chi-Keung Tang, Ling
Shao, and Yu-Wing Tai. Group collaborative learning for co-
salient object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2021. 8, 9

[12] Kuan Fang, Te-Lin Wu, Daniel Yang, Silvio Savarese, and
Lim J. Joseph. Demo2vec: Reasoning object affordances
from online videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
1, 3

[13] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo,
Yinghui Gao, and Biao Li. Axiom-based grad-cam: To-
wards accurate visualization and explanation of cnns. arXiv
preprint arXiv:2008.02312, 2020. 12

[14] Wei Gao, Fang Wan, Xingjia Pan, Zhiliang Peng, Qi Tian,
Zhenjun Han, Bolei Zhou, and Qixiang Ye. Ts-cam: Token
semantic coupled attention map for weakly supervised ob-
ject localization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2886–2895,
October 2021. 4, 7, 8, 9

[15] Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Interna-
tional Journal of Computer Vision, 129(6):1789–1819, 2021.
9

[16] Robert M. Gray and David L. Neuhoff. Quantization. IEEE
transactions on information theory, 44(6):2325–2383, 1998.
9

[17] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young
Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pages 3779–3787, 2019. 10

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 9

[19] Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and
Dacheng Tao. Affordance transfer learning for human-object
interaction detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
495–504, 2021. 12

[20] Yifei Huang, Minjie Cai, Zhenqiang Li, and Yoichi Sato.
Predicting gaze in egocentric video by learning task-
dependent attention transition. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 754–
769, 2018. 3, 7, 8

[21] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan
Yang, Liqiang Wang, and Boqing Gong. Rethinking class-
balanced methods for long-tailed visual recognition from
a domain adaptation perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7610–7619, 2020. 2

[22] Tilke Judd, Frédo Durand, and Antonio Torralba. A bench-
mark of computational models of saliency to predict human
fixations. 2012. 1

[23] Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing
complex network: Network compression via factor transfer.
arXiv preprint arXiv:1802.04977, 2018. 10

[24] Matthias Kümmerer, Thomas SA Wallis, and Matthias
Bethge. Deepgaze ii: Reading fixations from deep
features trained on object recognition. arXiv preprint
arXiv:1610.01563, 2016. 3, 7, 8, 10, 11

[25] Seunghyun Lee and Byung Cheol Song. Graph-based knowl-
edge distillation by multi-head attention network. arXiv
preprint arXiv:1907.02226, 2019. 11

[26] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng
Wang, Jintao Li, and Jiashi Feng. Overcoming classi-
fier imbalance for long-tail object detection with balanced
group softmax. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10991–
11000, 2020. 2

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 740–755. Springer, 2014. 1

[28] Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, and
Dacheng Tao. One-shot object affordance detection. arXiv
preprint arXiv:2108.03658, 2021. 1, 4

[29] Jinjie Mai, Meng Yang, and Wenfeng Luo. Erasing inte-
grated learning: A simple yet effective approach for weakly
supervised object localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8766–8775, 2020. 4, 7, 8, 9, 10, 11

[30] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales.
Ensemble distribution distillation. arXiv preprint
arXiv:1905.00076, 2019. 9

[31] Priyanka Mandikal and Kristen Grauman. Learning dexter-
ous grasping with object-centric visual affordances. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 6169–6176. IEEE, 2021. 12

[32] Austin Myers, Ching L Teo, Cornelia Fermüller, and Yian-
nis Aloimonos. Affordance detection of tool parts from ge-
ometric features. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 1374–1381. IEEE,
2015. 3, 4

[33] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen
Grauman. Grounded human-object interaction hotspots from
video. In Proceedings of the IEEE International Conference
on Computer Vision (CVPR), pages 8688–8697, 2019. 3, 4,
7, 8, 10, 11

[34] Tushar Nagarajan and Kristen Grauman. Learning affor-
dance landscapes for interaction exploration in 3d environ-
ments. arXiv preprint arXiv:2008.09241, 2020. 12

[35] Tushar Nagarajan and Kristen Grauman. Shaping embod-
ied agent behavior with activity-context priors from egocen-
tric video. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021. 12

[36] Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and
Kristen Grauman. Ego-topo: Environment affordances from
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
163–172, 2020. 12

[37] Anh Nguyen, Dimitrios Kanoulas, Darwin G Caldwell, and
Nikos G Tsagarakis. Object-based affordances detection



with convolutional neural networks and dense conditional
random fields. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5908–5915.
IEEE, 2017. 3, 4

[38] Xingjia Pan, Yingguo Gao, Zhiwen Lin, Fan Tang, Weiming
Dong, Haolei Yuan, Feiyue Huang, and Changsheng Xu. Un-
veiling the potential of structure preserving for weakly super-
vised object localization. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11642–11651, 2021. 4, 7, 8, 9

[39] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho.
Relational knowledge distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3967–3976, 2019. 11

[40] Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh, and
Qun Liu. Alp-kd: Attention-based layer projection for
knowledge distillation. arXiv preprint arXiv:2012.14022,
2020. 10

[41] Robert J Peters, Asha Iyer, Laurent Itti, and Christof Koch.
Components of bottom-up gaze allocation in natural images.
Vision research, 45(18):2397–2416, 2005. 3

[42] Mary Phuong and Christoph H Lampert. Distillation-based
training for multi-exit architectures. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1355–1364, 2019. 9

[43] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014. 10

[44] Johann Sawatzky, Abhilash Srikantha, and Juergen Gall.
Weakly supervised affordance detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017. 4

[45] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 8, 12

[46] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:
Forcing a network to be meticulous for weakly-supervised
object and action localization. In 2017 IEEE international
conference on computer vision (ICCV), pages 3544–3553.
IEEE, 2017. 9

[47] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1

[48] Michael J Swain and Dana H Ballard. Color indexing. In-
ternational Journal of Computer Vision (IJCV), 7(1):11–32,
1991. 3

[49] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1365–1374,
2019. 11

[50] Xiaobo Wang, Tianyu Fu, Shengcai Liao, Shuo Wang,
Zhen Lei, and Tao Mei. Exclusivity-consistency regularized
knowledge distillation for face recognition. In Computer

Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIV 16, pages
325–342. Springer, 2020. 10

[51] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 7794–7803, 2018. 8, 9

[52] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–
10698, 2020. 9

[53] Haolan Xue, Chang Liu, Fang Wan, Jianbin Jiao, Xi-
angyang Ji, and Qixiang Ye. Danet: Divergent activation
for weakly supervised object localization. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 6589–6598, 2019. 9

[54] Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L Yuille.
Training deep neural networks in generations: A more tol-
erant teacher educates better students. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages
5628–5635, 2019. 9

[55] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4133–4141, 2017. 11

[56] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016. 10

[57] Chenrui Zhang and Yuxin Peng. Better and faster: knowl-
edge transfer from multiple self-supervised learning tasks
via graph distillation for video classification. arXiv preprint
arXiv:1804.10069, 2018. 11

[58] Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. Deep mutual learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4320–4328, 2018. 9

[59] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2921–2929, 2016. 9, 12


