
SimAN: Exploring Self-Supervised Representation Learning of Scene Text
via Similarity-Aware Normalization

Supplementary Material

Table 1. Visualization of the self-supervised learning scheme. The queries are denoted as red boxes. The proposed SimAN requires
distinguishable representations to identify different patterns, thus enabling self-supervised representation learning of the encoder. Under
the supervision of the L2, the responses on the neighboring patches are becoming more and more accurate, suggesting the increasing
quality of the representations.

Query

Key (neighboring patch)

Mask

L2 ≈ 0.3

L2 ≈ 0.1

L2 ≈ 0.02

1. Visualization
To validate the effectiveness of the proposed SimAN,

which estimates pattern similarity and then queries corre-
sponding style keys for recovering the augmented patch,
we visualize the attentional responses of style keys on the
neighboring patch. As shown in Table 1, with the decrease
of the L2 loss, the attentional mask presents a more and
more accurate response based on a similar pattern. For in-
stance, as shown in the first column, a “t” query (denoted
as a red box) on the source patch obtains a response of “t”
on the neighboring patch. This reveals the learning mecha-
nism of the proposed SimAN, i.e., distinguishable represen-
tations between different characters are required to identify
patterns and align correct styles for image reconstruction.

2. Benchmark
We detail the public scene text benchmarks used for

recognition evaluation as follows.
ICDAR 2003 [14] (IC03) contains 867 cropped im-

ages after discarding images that contain non-alphanumeric
characters or less than three characters [19].

ICDAR 2013 [11] (IC13) inherits most of its samples
from IC03. It contains 1015 cropped images.

ICDAR 2015 [10] (IC15) was collected by using Google
Glasses. It includes more than 200 irregular text images.

Street View Text [19] (SVT) consists of 647 word im-
ages for testing. Some images are severely corrupted by
noise and blur.

Street View Text Perspective [17] (SVT-P) is a perspec-
tive distorted version of SVT, containing 645 cropped im-
ages for testing.

IIIT5K-Words [15] (IIIT5K) contains 3000 and 2000
cropped word images for testing and training, respectively.
Some texts are curved.

CUTE80 [18] (CT80) was specifically collected to eval-
uate the performance of curved text recognition. It contains
288 cropped natural images.

Total-Text [4] (TText) focuses on curved text recogni-
tion. It contains 2201 cropped word images.

3. Augmentation Strategy
Different from the previous study SeqCLR [1], we dis-

card the spatial transformation augmentations because our
approach recovers images based on consistent visual cues.
Therefore, we limit the augmentation strategies to color
changes, blurring, sharpen blending, and random noise. We
use a CPU-efficient toolkit1 to perform augmentation. The
pseudo-code is shown as below for reference.

1 import albumentations as A
2 A.Sequential([
3 # Color Changes
4 A.InvertImg(),
5 A.OneOf([
6 A.ChannelDropout(),
7 A.ChannelShuffle(),
8 A.ToGray(),
9 A.RGBShift(),

10 A.Equalize(),
11 A.RandomBrightnessContrast(0.5, 0.5),
12 A.ColorJitter(0.5, 0.5, 0.5, 0.5),
13 A.HueSaturationValue(),
14 A.RandomToneCurve(),

1https://github.com/albumentations-team/
albumentations



15 ]),
16 A.OneOf([
17 # Sharpen Blending
18 A.Sharpen(alpha=(1.0, 1.0)),
19 # Blurring
20 A.OneOf([
21 A.ImageCompression(40, 80),
22 A.Blur(blur_limit=[3, 3]),
23 A.GaussianBlur(blur_limit=[3, 3]),
24 A.MedianBlur(blur_limit=[3, 3]),
25 A.MotionBlur(blur_limit=[3, 3]),
26 ]),
27 # Random Noise
28 A.OneOf([
29 A.Emboss((0.5, 1.0), (0.8, 1.0)),
30 A.GaussNoise(),
31 A.ISONoise((0.1, 0.5), (0.5, 1.0)),
32 A.MultiplicativeNoise(),
33 ]),
34 ]),
35 ])

Table 2. Probe evaluation using an attentional probe with two BiL-
STMs (256 hidden units). We report the word accuracy (Acc., %)
and word-level accuracy up to one edit distance (E.D. 1, %). The
two augmentation toolkits achieve comparable performance.

Augmentation IIIT5K IC03 IC13

Toolkit Acc. E.D. 1 Acc. E.D. 1 Acc. E.D. 1

SeqCLR’s 65.6 78.2 71.3 84.2 69.4 82.2
Ours 66.5 78.8 71.7 83.6 68.7 81.6

Note that we use a different toolkit albumentations from
that of SeqCLR [1]. We clarify the performance gain is
achieved by our proposed approach, rather than the different
toolkit. As shown in Table 2, the two augmentation toolkits
achieve comparable performance.

4. Recognizer Initialization
In the section of Probe Evaluation, we simply initialize

the recognizer backbone using the whole pre-trained back-
bone parameters. This is a common setting to perform a
probe evaluation to validate the representation quality. The
architecture of the recognizer backbone (ResNet-29) and
the corresponding decoder for its self-supervised training
are shown in Table 3 and Table 4, respectively.

33%

35%

37%

39%

41%

43%

45%

~Block1 ~Block2 ~Block3 ~Block4

IIIT5K
IC03
IC13

Initialization
Setting

W
or
d-
le
ve
lA
cc
ur
ac
y

Figure 1. The recognizer achieves the best performance by using
the pre-trained parameters up to a depth at “Block3”.

Table 3. Architecture of ResNet-29. We present the size of fea-
ture maps during representation learning and recognition training.
The backbone (encoder) trained on image patches can generalize
well to images of variant widths. We pad the output feature maps
(whose height is one) along the vertical direction for the extraction
of eight-neighborhood statistics.

Layers Configurations Size

Repr. Learn. Reg.

Input RGB image 32× 32 32× 100

Conv1 c: 32 k: 3× 3 32× 32 32× 100

Conv2 c: 64 k: 3× 3 32× 32 32× 100

Pool1 k: 2× 2 s: 2× 2 16× 16 16× 50

Block1
[
c :128, k :3× 3
c :128, k :3× 3

]
× 1 16× 16 16× 50

Conv3 c: 128 k: 3× 3 16× 16 16× 50

Pool2 k: 2× 2 s: 2× 2 8× 8 8× 25

Block2
[
c :256, k :3× 3
c :256, k :3× 3

]
× 2 8× 8 8× 25

Conv4 c: 256 k: 3× 3 8× 8 8× 25

Pool3 k: 2× 2
4× 9 4× 26s: 2× 1 p: 0× 1

Block3
[
c :512, k :3× 3
c :256, k :3× 3

]
× 5 4× 9 4× 26

Conv5 c: 512 k: 3× 3 4× 9 4× 26

Block4
[
c :512, k :3× 3
c :512, k :3× 3

]
× 3 4× 9 4× 26

Conv6 c: 512 k: 2× 2
2× 10 2× 27s: 2× 1 p: 0× 1

Conv7 c: 512 k: 2× 2
1× 9 1× 26s: 1× 1 p: 0× 0

However, it is revealed by [3] that not all the pre-trained
parameters can benefit the downstream task. Therefore, for
the experiment of Semi-Supervision Evaluation, we explore
different initialization settings, i.e., how many layers (how
deep) should be initialized by using pre-trained parameters.
Specifically, we simply choose four blocks of the recognizer
backbone as our four depth options. We fine-tune the rec-
ognizer using 10K labeled samples of SynthText [6]. As
shown in Figure 1, the recognizer achieves the best perfor-
mance with the initialization setting at depth “Block3”. We
provide the decoder for the self-supervised learning of the
first three blocks, as shown in Table 5.

5. Probe/Recognizer Objectives
After the self-supervised representation learning stage,

we perform probe and semi-supervision evaluation. We set
the batch size to 256 and train the recognizer for 50K itera-
tions. The optimizer is AdaDelta [21] with the default set-
ting. The learning rate is set to 1.0 and linearly decreased



Table 4. Architecture of the decoder for the self-supervised learn-
ing of ResNet-29 in the Section of Probe Evaluation.

Layers Configurations Size

Input Feature Maps 1× 9

DeConv c: 256, k: 2× 2, s: 1× 1, p: 0× 0, ReLU 2× 10

Conv c: 256, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 2× 10

DeConv c: 192, k: 2× 2, s: 2× 1, p: 0× 0, ReLU 4× 11

Conv c: 192, k: 3× 3, s: 1× 1, p: 1× 0, BN, ReLU 4× 9

DeConv c: 160, k: 2× 2, s: 2× 1, p: 0× 0, ReLU 8× 10

Conv c: 160, k: 3× 3, s: 1× 1, p: 1× 0, BN, ReLU 8× 8

Upsample Ratio: ×2, Mode: “nearest” 16× 16

Conv c: 128, k: 3× 3, s: 1× 1, p: 1× 1, ReLU 16× 16

Conv c: 128, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 16× 16

Upsample Ratio: ×2, Mode: “nearest” 32× 32

Conv c: 64, k: 3× 3, s: 1× 1, p: 1× 1, ReLU 32× 32

Conv c: 64, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 32× 32

Conv c: 3, k: 3× 3, s: 1× 1, p: 1× 1, Tanh(·) 32× 32

Table 5. Architecture of the decoder for the self-supervised learn-
ing of first three blocks of ResNet-29 in the Section of Semi-
Supervision Evaluation.

Layers Configurations Size

Input Feature Maps 4× 9

DeConv c: 256, k: 2× 2, s: 1× 1, p: 0× 0, ReLU 5× 10

Conv c: 256, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 5× 10

DeConv c: 192, k: 2× 2, s: 2× 1, p: 0× 0, ReLU 11× 11

Conv c: 192, k: 3× 3, s: 1× 1, p: 0× 0, BN, ReLU 9× 9

DeConv c: 160, k: 2× 2, s: 1× 1, p: 0× 0, ReLU 10× 10

Conv c: 160, k: 3× 3, s: 1× 1, p: 0× 0, BN, ReLU 8× 8

Upsample Ratio: ×2, Mode: “nearest” 16× 16

Conv c: 128, k: 3× 3, s: 1× 1, p: 1× 1, ReLU 16× 16

Conv c: 128, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 16× 16

Upsample Ratio: ×2, Mode: “nearest” 32× 32

Conv c: 64, k: 3× 3, s: 1× 1, p: 1× 1, ReLU 32× 32

Conv c: 64, k: 3× 3, s: 1× 1, p: 1× 1, BN, ReLU 32× 32

Conv c: 3, k: 3× 3, s: 1× 1, p: 1× 1, Tanh(·) 32× 32

to 0.1. The input word images are resized to 64× 200. The
experiments are conducted on the PyTorch framework [16]
using two NVIDIA P100 GPUs (16GB memory per GPU).

The probe/recognizer outputs 95 categories, including
52 case-sensitive letters, 10 digits, 32 punctuation symbols,
and an additional “Blank” token for CTC decoding [5] or
an “End of Sequence” token for attention decoding [2].

1) The CTC decoder [5] transforms the feature sequence
F ∈ RT×C to an output sequence Y ∈ RT×95 using a fully
connected layer. For each time step, yt ∈ R95 denotes the
probability distribution over 95 categories. The objective is
to minimize the negative log-likelihood of conditional prob-

ability of ground truth GT :

LCTC = − log p(GT |Y ), (1)

where the conditional probability is defined as the
sum of probabilities of all possible sequence πi ∈
π that can be mapped onto the GT (For instance,
“-CC--VVV---P--RR” can be mapped onto “CVPR”). It
is formulated as

p(GT |Y ) =
∑
π

p(π|Y ) =
∑
π

T∏
t=1

Y πi
t , (2)

where Y πi
t denotes the predicted probability at time step t

with a sequence πi ∈ π.
2) The attention decoder [2] is optimized by minimiz-

ing the negative log-likelihood of conditional probability of
ground truth GT :

LAtt = −
T∑

t=1

log p(GTt|yt), (3)

where yt is the predicted probability over 95 categories at
time step t, given by

yt = SoftMax(Wst + b). (4)

The st is the hidden state at the t-th step, updated by

st = GRU(st−1, (yt−1, gt)), (5)

where gt represents the glimpse vectors

gt = α · h. (6)

The h denotes the feature sequence. The α is the attention
mask, expressed as

α = SoftMax(e), (7)

e = wT Tanh(Wsst−1 +Whh+ be). (8)

Here, W , b, wT, Ws, Wh and be are trainable parameters.

6. Adversarial Loss
We adopt an adversarial objective to minimize the distri-

bution shift between the generated and real data, which is a
widely used setting for image generating tasks. To study the
effectiveness of the adversarial training, we conduct an ab-
lation experiment by disabling the adversarial loss Ladv . As
shown in Table 7, the Ladv increases representation quality
and makes the generated distribution closer to the real one.
We believe the Ladv is necessary for visual effects, because
it achieves more lifelike images.



Table 6. Semi-supervised performance evaluation. We sample three orders of scales (10K, 100K, and 1M) of data from SynthText (6M).
Our approach can learn high-quality representations from unlabeled data and improve the supervised baseline, especially when used with
low-resource labeled data.

Labeled Data Supervision IIIT5K SVT IC03 IC13 SVT-P CT80 IC15

10K Sup. 35.0 ± 6.7 7.9 ± 3.4 37.6 ± 6.3 38.6 ± 6.5 6.8 ± 2.8 8.5 ± 3.2 10.4 ± 3.5
Semi-Sup. 41.1 ± 1.3 16.2 ± 1.4 42.9 ± 2.1 43.9 ± 1.2 14.2 ± 1.2 15.5 ± 1.7 17.5 ± 1.2

100K Sup. 72.6 ± 0.3 55.2 ± 1.2 79.4 ± 1.1 75.3 ± 0.8 45.4 ± 0.9 46.7 ± 1.0 47.6 ± 1.0
Semi-Sup. 73.6 ± 0.5 55.3 ± 1.0 79.9 ± 1.0 75.6 ± 0.5 45.6 ± 0.8 46.8 ± 1.5 47.9 ± 0.4

1M Sup. 84.1 ± 0.5 73.1 ± 0.2 88.2 ± 0.6 86.4 ± 1.0 60.5 ± 0.8 59.5 ± 1.5 58.9 ± 0.8
Semi-Sup. 84.1 ± 0.6 73.1 ± 1.0 89.2 ± 1.1 86.5 ± 0.9 62.1 ± 1.1 63.7 ± 2.8 59.7 ± 0.6

6M Sup. 86.6 ± 0.5 79.6 ± 0.6 91.5 ± 0.7 89.0 ± 0.3 68.3 ± 0.7 71.9 ± 1.8 66.2 ± 0.6
Semi-Sup. 87.5 ± 0.3 80.6 ± 0.5 91.8 ± 0.7 89.9 ± 0.6 68.3 ± 1.1 71.4 ± 1.7 66.2 ± 0.4

Table 7. Ablation study of adversarial loss. We evaluate the repre-
sentation quality using an attention probe with two BiLSTMs (256
hidden units), and the distribution shift using FID [7] score. We
average the word accuracies (%) of IIIT5K, IC03 and IC13.

Ladv Acc. ↑ FID ↓
× 68.8 24.0
✓ 69.0 23.2

7. Compare with AdaIN
It is known that the AdaIN [8, 12] can transfer style us-

ing global statistics (mean and standard deviation) of fea-
ture maps. We conduct a probe evaluation (following the
setting of ResNet-FCN-Att.) to compare our SimAN with
AdaIN. As shown in Table 8, the proposed SimAN outper-
forms AdaIN. This suggests the representation capability is
improved by the similarity estimation, which minimizes the
distance between similar patterns.

Table 8. Probe evaluation of AdaIN and SimAN.

Method IIIT5K IC03 IC13

Acc. E.D. 1 Acc. E.D. 1 Acc. E.D. 1

AdaIN 9.7 21.9 9.1 18.7 11.1 24.6
SimAN 22.2 39.7 22.3 38.6 24.1 43.6

8. Semi-Supervision Evaluation
We provide experimental results of five runs on seven

popular benchmarks in Table 6.

9. Network Architecture
We present the encoder and decoder used in the Section

of Generative Visual Task in Table 9 and 10, respectively.
These are popular architectures and are widely used [8, 9].

We present the discriminator in Table 11.

Table 9. Architecture of the encoder in the Section of Generative
Visual Task.

Layers Configurations Size

Input RGB image 3× 64× 64

Conv1 c: 3 k: 1 3× 64× 64

Conv2 c: 64 k: 3 Reflection Pad: 1, ReLU 64× 64× 64

Conv3 c: 64 k: 3 Reflection Pad: 1, ReLU 64× 64× 64

MaxPool k: 2 s: 2 64× 32× 32

Conv4 c: 128 k: 3 Reflection Pad: 1, ReLU 128× 32× 32

Conv5 c: 128 k: 3 Reflection Pad: 1, ReLU 128× 32× 32

MaxPool k: 2 s: 2 128× 16× 16

Conv6 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv7 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv8 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv9 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

MaxPool k: 2 s: 2 256× 8× 8

Conv10 c: 512 k: 3 Reflection Pad: 1, ReLU 512× 8× 8

10. Data Synthesis
Following the pipeline of SynthText [6], we simply ren-

der a text on a clean canvas. The fonts are publicly avail-
able2. We follow the strict setting proposed by Long et
al. [13] to include punctuation symbols, digits, upper-case
and lower-case characters for evaluation. We also use the
same recognizer trained on our 1M synthetic data.

We perform random blurring on the synthetic data to
meet the low-quality practice of scene text images. The
pseudo-code is shown as below for reference.

1 import albumentations as A
2 A.OneOf([
3 A.ImageCompression(40, 80),
4 A.Blur(blur_limit=[5, 11]),

2https://fonts.google.com/



5 A.GaussianBlur(blur_limit=(5, 11)),
6 A.MedianBlur(blur_limit=[5, 11]),
7 A.MotionBlur(blur_limit=[5, 11])
8 ])

Table 10. Architecture of the decoder in the Section of Generative
Visual Task.

Layers Configurations Size

Input Feature Map 512× 8× 8

Conv1 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 8× 8

Upsample Ratio: ×2, Mode: “nearest” 256× 16× 16

Conv2 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv3 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv4 c: 256 k: 3 Reflection Pad: 1, ReLU 256× 16× 16

Conv5 c: 128 k: 3 Reflection Pad: 1, ReLU 128× 16× 16

Upsample Ratio: ×2, Mode: “nearest” 128× 32× 32

Conv6 c: 128 k: 3 Reflection Pad: 1, ReLU 128× 32× 32

Conv7 c: 64 k: 3 Reflection Pad: 1, ReLU 64× 32× 32

Upsample Ratio: ×2, Mode: “nearest” 64× 64× 64

Conv8 c: 64 k: 3 Reflection Pad: 1, ReLU 64× 64× 64

Conv9 c: 3 k: 3 Reflection Pad: 1, ReLU 3× 64× 64

Tanh - 3× 64× 64

Table 11. Architecture of the discriminator.

Layers Configurations

Conv1 c: 64 k: 4 s: 2 p: 1 PReLU

Conv2 c: 128 k: 4 s: 2 p: 1 PReLU

Conv3 c: 256 k: 4 s: 2 p: 1 PReLU

Conv4 c: 512 k: 4 s: 1 p: 1 PReLU

Conv5 c: 1 k: 4 s: 1 p: 1

11. Arbitrary-Length Text Editing
We follow the same setting as EditText [20] to generate

a content image. We use a standard font style “Arial.ttf”
to put the target text string on a clean canvas as content in-
put. The target text is randomly selected from the corpus
of SynthText [6]. Thus, the length of the source text string
and the target one can be significantly different, which sim-
ulates practice challenges. We present the edited results in
Figure 2.

12. Font Interpolation
We formulate the process of font interpolation as math-

ematical equations. First, we extract the content represen-
tations of the source image and target image as Q and K,

Source Generated

Figure 2. Arbitrary-length text editing. All the images are resized
to (64, 256).



respectively. Besides, we obtain their style representations
µsource, σsource, µtarget and σtarget.

12.1. Color Interpolation

First, we rearrange the target style representations ac-
cording to the source content representation Q:

µrearrange = µtarget Softmax

(
KTQ√

dk

)
,

σrearrange = σtarget Softmax

(
KTQ√

dk

)
.

(9)

Then we perform interpolation on the source and rear-
ranged style representations:

µ′ = (1− α)µsource + αµrearrange,

σ′ = (1− α)σsource + ασrearrange, α ∈ [0, 1].
(10)

Finally, we decode the feature maps to obtain an image:

Q′
c,i,j = Qc,i,jσ

′
c,i,j + µ′

c,i,j , (11)

Irec = Decoder(Q′). (12)

12.2. Glyph Interpolation

The glyph interpolation requires a same character/string
on the source and target image. First, we normalize the tar-
get glyph image using the source style:

µrearrange = µsource Softmax

(
QTK√

dk

)
,

σrearrange = σsource Softmax

(
QTK√

dk

)
.

(13)

The target glyph can be presented as:

Krearrange
c,i,j = Kc,i,jσ

rearrange
c,i,j + µrearrange

c,i,j . (14)

This ensures the difference between the source and target
representation is only the glyph.

Then we perform interpolation on the source and rear-
ranged glyph representation:

Q′
c,i,j = (1− α)Qc,i,j + αKrearrange

c,i,j , α ∈ [0, 1]. (15)

Finally, we obtain an image:

Irec = Decoder(Q′). (16)

References
[1] Aviad Aberdam, Ron Litman, Shahar Tsiper, Oron Anschel,

Ron Slossberg, Shai Mazor, R Manmatha, and Pietro Perona.
Sequence-to-sequence contrastive learning for text recogni-
tion. In CVPR, pages 15302–15312, 2021.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In ICLR, 2015.

[3] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, pages 1691–1703, 2020.

[4] Chee-Kheng Ch’ng, Chee Seng Chan, and Cheng-Lin Liu.
Total-Text: toward orientation robustness in scene text de-
tection. Int. J. Doc. Anal. Recogn., 23(1):31–52, 2020.

[5] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In ICML, pages 369–376, 2006.

[6] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data for text localisation in natural images. In
CVPR, pages 2315–2324, 2016.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NeurIPS, pages 6626–6637, 2017.

[8] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
pages 1501–1510, 2017.

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711, 2016.

[10] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos
Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-
mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-
drasekhar, Shijian Lu, et al. ICDAR 2015 competition on
robust reading. In ICDAR, pages 1156–1160, 2015.

[11] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida,
Masakazu Iwamura, Lluis Gomez i Bigorda, Sergi Robles
Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Al-
mazan, and Lluis Pere De Las Heras. ICDAR 2013 robust
reading competition. In ICDAR, pages 1484–1493, 2013.

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019.

[13] Shangbang Long and Cong Yao. UnrealText: Synthesizing
realistic scene text images from the unreal world. In CVPR,
pages 5488–5497, 2020.

[14] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang,
Shirley Wong, and Robert Young. ICDAR 2003 robust read-
ing competitions. In ICDAR, pages 682–687, 2003.

[15] Anand Mishra, Karteek Alahari, and CV Jawahar. Scene text
recognition using higher order language priors. In BMVC,
pages 1–11, 2012.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NeurIPS Autodiff Workshop,
2017.

[17] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan
Tian, and Chew Lim Tan. Recognizing text with perspec-
tive distortion in natural scenes. In ICCV, pages 569–576,
2013.

[18] Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng
Chan, and Chew Lim Tan. A robust arbitrary text detection
system for natural scene images. Expert Systems with Appli-
cations, 41(18):8027–8048, 2014.



[19] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end
scene text recognition. In ICCV, pages 1457–1464, 2011.

[20] Liang Wu, Chengquan Zhang, Jiaming Liu, Junyu Han, Jing-
tuo Liu, Errui Ding, and Xiang Bai. Editing text in the wild.
In ACM Int. Conf. Multimedia, pages 1500–1508, 2019.

[21] Matthew D. Zeiler. ADADELTA: an adaptive learning rate
method. CoRR, abs/1212.5701, 2012.


