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8. Additional Experiment Results
Visualization on Human3.6M dataset We illustrate
more prediction cases on Human3.6M dataset in Figure 7
and Figure 8. In Figure (a), the first and second rows show
the samples from the accuracy and diversity sampler, re-
spectively. In Figure (b), the first row shows the ground
truth human motion, and the second and third rows show the
samples from accuracy and diversity sampler respectively.
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(b) Predicted human motion.

Figure 7. Additional prediction case 1 on Human3.6M dataset.
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Figure 8. Additional prediction case 2 on Human3.6M dataset.

Visualization on HumanEva-I dataset We illustrate two
more prediction cases on HumanEva-I dataset in Figure 9
and Figure 10. In Figure (a), the first and second rows show
the samples from the accuracy and diversity sampler respec-
tively. In Figure (b), the first row shows the ground truth hu-
man motion, and the second and third rows show the sam-
ples from accuracy and diversity sampler respectively.
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(b) Predicted human motion.

Figure 9. Additional prediction case 1 on HumanEva-I dataset.
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Figure 10. Additional prediction case 2 on HumanEva-I dataset.



Additional ablation results This is the additional abla-
tion analysis results which are corresponding to the exper-
iments on HumanEva-I dataset. We visualize the predicted
end poses in Figure 11 and show the quantitative compari-
son in Table 3.

History

History

GT

GT

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(a) Samples from the predictor with τ = 15.
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(b) Samples from the predictor with τ = 60.

Figure 11. Visualization of predicted end poses on HumanEva-I
dataset with different oracles. Figure 11a and 11b illustrate the
performance of the predictor with oracle (τ = 15) and the predic-
tor with oracle (τ = 60) respectively. In each figure, the first and
second row are the samples generated from accuracy and diversity
prior function respectively.

τ = 15, short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.561 0.241 0.231 0.227 0.228 0.227 0.228 0.229
FDE ↓ 0.623 0.249 0.243 0.236 0.235 0.235 0.236 0.244
APD ↑ 6.966 6.943 6.943 6.139 5.354 4.441 3.217 1.619

τ = 60, non-short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.345 0.236 0.229 0.227 0.226 0.226 0.226 0.233
FDE ↓ 0.346 0.243 0.234 0.232 0.228 0.227 0.229 0.237
APD ↑ 2.120 2.330 2.449 2.476 2.429 2.309 2.059 1.706

Table 3. The comparison with different τ on HumanEva-I dataset.

The experiment results are consistent with the ones on
Human3.6M dataset. Similarly, we observe that the di-
versity of our proposed framework with short-term oracle
(τ = 15) is significantly improved compared with the one
with non-short-term oracle (τ = 60). Since HumanEva-I is
a small dataset and evaluated with a short prediction hori-
zon, the number of different modes is intrinsically limited.
We can also observe that the predicted end poses in Fig-
ure 11 are not diverse as the ones in Human3.6M dataset.
Also, we observe that the model with a non-short-term or-
acle doesn’t increase the diversity so much. This is also
reasonable since all the modes provided by grouping the
similar initial poses once can still be similar. These results
also imply that using short-term oracle, i.e., grouping simi-
lar poses several times every τ = 15 discover more modes.

Additional ablation of oracle In order to show that the
short-term oracle loss in Equation 11 is necessary, we pro-
vide the qualitative results of the model without short-term
oracle supervision in Figure 12. The diversity prior w/o or-
acle supervision indeed produces infeasible motions.

History

History

GT

GT

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(a) Samples from the predictor with τ = 15.

Figure 12. Predicted end poses of Ours w/o oracle. The 1st row
shows samples from the accuracy prior. The 2nd row shows sam-
ples from the diversity prior trained without oracle’s supervision.

9. Implementation Details
Physical feasibility loss In this section we provide the de-
tails of the physical feasibility loss used in Equation 12. The
velocity loss Lvel defined as the average difference between
each two successive poses:

Lvel(X) =
1

T

T−1∑
t=0

‖Xt+1 −Xt‖2, (17)

We also constraint limbs by using the following loss:

Llimb(X) = −λdir logP (n) +
λlen

nlT

∑
i

∑
t

(‖l̂i(t)‖ − ‖li‖)2,

(18)
where the likelihood logP (n) is approximated by a neural
spline normalizing flow [20,42,63]. n = [n1,n2, . . . ,nm],
where ni is the normalized direction of the i-th limb. Mean-
while, we also enforce the predicted limbs’ length ‖l̂i(t)‖
should be same as the ground truth ‖li‖. where l̂i(t) is the
length of the i-th predicted limb at time step t. Besides, we
use a low-pass filter to smooth the predicted poses generated
by the diversity sampler after training. We use the first 4
lowest frequencies calculated by the real Fourier transform.
The parameters (λvel, λdir, λlimb) is set as (800, 0.01, 100)
for both Human3.6M and HumanEva-I dataset.
Short-term oracle details We selectK = 10 as the num-
ber of augmented future motions for k-determinantal point
process. We use the same structure and loss as the accuracy
sampler. The only different is the training process. Since
we have multiple future motions given an observation, the
loss Lo = −LELBO + λaccRacc becomes:

LELBO =
1

K

K∑
j=1

EQψ(Z|Xj ,C)[logPθ(Xj |Z,C)]

−DKL[Qψ(Z|Xj ,C)||Qacc(Z|C)],

(19)



where, K is the number of augmented pseudo future mo-
tions. Similarly, the regularization becomes:

Racc =
1

K

K∑
j=1

min
i
‖X̂i −Xj‖2

zi ∼ Q(Z|C), X̂i = dθ(X|C, zi), i = 1, . . . ,K.
(20)

Notice that we set the sample number of the decoder as K,
too. Hence, every prediction sample will be supervised by
the augmented pseudo future motions. We use one time step
observation as C to predict τ time steps future motions for
both Human3.6M and HumanEva-I datasets.

Training parameters The dimension nz of latent vari-
able Z is 128. The diversity prior function is a multiple
layer neutron with two hidden layers and each layer has 512
neurons. For the accuracy prior function, we use the same
historical embedding and MLP. We only use the diagonal of
the covariance matrix. The dimension of the hidden state
of RNN is 128. We use Adam optimizer with an exponen-
tial decay learning rate. The training batch size is 64, and
the total number of epochs is 300 for Human3.6M dataset
and 100 for HumanEva-I dataset. The hyperparameters for
the accuracy sampler are (λelbo, λacc) = (1.0, 2.0). λdiv, λref
for the diversity sampler are set as 15, 0.3 for Human3.6M
dataset with τ = 25 and 10, 0.3 for HumanEva-I dataset
with τ = 15. For the grouping threshold, we use the same
number in [61, 62]. We set the diversity sensitivity η = 15
for both datasets. For HumanEva-I dataset, we augment the
dataset first for all the experiments by grouping the similar
last historical pose first since the dataset is small. We use
the same decoder and encoder structure as the ones in [62],
and MLP ◦ RNN represents that we use an MLP after the
RNN outputs, please see details in [62].

10. Limitations and Future Work
There are several improvements that can be utilized with

our framework. For instance, the proposed framework can
also be incorporated with the other advanced human body
representations such as graph neural network [42] to en-
hance the prediction accuracy. Besides, several existing
techniques [42,64] can also be used to improve the smooth-
ness in advance. Also, current work does not consider the
semantic/context information of future poses. Investigat-
ing how to incorporate such information [15] into the pro-
posed framework could be a promising future work. From
the metrics perspective, since our method use similarity-
grouping recursively to explore more diversity, a novel
multi-modality metric is needed to evaluate it properly.


