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1. homNIST

The homNIST test set1 consists of 32 homographic per-
turbations of each image in the MNIST test set (each
of which has been black-padded from size 28x28 to size
40x40). The homographies are randomly sampled from
right Haar measure for each image in he MNIST test set,
and are chosen to be sufficiently close to the identity that
inspection of a random sample of 320 of the images exhibit
minimal edge effects. Figure 1 gives a sample of images
from our homNIST test set.

2. Proofs

Here we collect rigourous mathematical proofs of the
claimed theorems. To follow the proofs of Theorems 4.2,
4.3 and 4.5, the reader will need to know some topological
definitions; specifically of topological spaces and open sets,
compact and locally compact Hausdorff spaces, and conti-
nuity of maps; for these we refer the reader to [2]. To follow
the proof of Theorem 4.4, the reader will need to be famil-
iar with differential forms on manifolds, their pullbacks and
their integrals; for these we refer the reader to [1].

In order to prove Theorems 4.2 and 4.3, we require the
following technical lemma.

Lemma 2.1. Let X and Y be locally compact Hausdorff
spaces, and let F : X × Y → Rn be a continuous function
for which there exists a compact set K ⊂ Y such that the
support of F is contained inX×K. If ν is a Radon measure
on Y , then the map

X ∋ x 7→
∫
Y

F (x, y)dν(y) ∈ Rn (1)

is a continuous function on X .

Proof. The proof is almost identical to [4, Lemma 1.102].
In [4, Lemma 1.102], Y is instead a locally compact Haus-
dorff group, with ν being Haar measure. However the group
properties are not required for the proof of continuity. The

1Available at https://www.kaggle.com/datasets/lachlanemacdonald/homnist

only other difference is that in [4, Lemma 1.102], F is as-
sumed to have compact support in both the x and y vari-
ables, while we hypothesise only compact support in the y
variable. This difference also does not impact the proof that
Equation (1) defines a continuous map.

Theorem 4.2 in fact holds at a much greater level of gen-
erality without change to the proof.

Theorem 4.2. Let X be any Hausdorff manifold, dx a vol-
ume form on X , and suppose that G acts smoothly on X .
Let f ∈ Cc(X;RK) and ψ ∈ Cc(X,RK×L). Then the
formula

f ∗ ψ(u) :=
∫
X

f(x) · ψ(u−1 · x) det(Du−1(x)) dx,

given for u ∈ G, defines a continuous function f ∗ ψ ∈
C(G;RL).

Proof. The function G × X ∋ (u, x) 7→ ψ(u−1 ·
x) det(Du−1(x)) ∈ RK×L is continuous, by continuity of
ψ and by smoothness of the action of G on X . It follows
then that (u, x) 7→ f(x) · ψ(u−1 · x) det(Du−1(x)) is con-
tinuous on G × X with support in G × C, where C is the
compact support of f . Once again, Lemma 2.1 implies that
u 7→

∫
X
f(x) ·ψ(u−1 ·x) det(Du−1(x))dx is a continuous

function on G.

Theorem 4.3 follows by a similar argument to that of
Theorem 4.2.

Theorem 4.3. Define the convolution of a feature map
f ∈ C(G;RK) with a filter map ψ ∈ Cc(G;RK×L) by
the formula

f ∗ ψ(u) :=
∫
G

f(v) · ψ(v−1u)dµL(v) (2)

=

∫
G

f(uv−1) · ψ(v)dµR(v), (3)

where · denotes matrix multiplication. Then f ∗ ψ is a
continuous function on G, and for all v ∈ G one has
Lv(f) ∗ ψ = Lv(f ∗ ψ).
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Figure 1: Samples taken from homNIST test set.

Proof. By continuity of f together with continuity of the
multiplication in G, the function (u, v) 7→ f(uv−1) is con-
tinuous as a map G × G → RK . Let C be the compact
support of ψ. We then see that (u, v) 7→ f(uv−1) · ψ(v) is
a continuous function G × G → RL, with support con-
tained in the set G × C. Lemma 2.1 then implies that
u 7→

∫
G
f(uv−1) · ψ(v)dµR(v) is continuous as a function

on G. The fact that∫
G

f(uv−1) · ψ(v)dµR(v) =

∫
G

f(w) · ψ(w−1u)dµL(w)

follows from making the substitution w = uv−1 and in-
voking the identity dµR(w

−1u) = dµL(u
−1w), followed

by the left-invariance dµL(u
−1w) = dµL(w) of µL. Fi-

nally, equivariance follows immediately from Equation (3),
and can be seen from Equation (2) using left-invariance of
µL.

Theorem 4.4 below relies on some differential geometry.

Theorem 4.4. If f is an integrable function on G which
is zero outside of a sufficiently small neighbourhood of the
identity, then Haar measure dµR can always be chosen such
that∫

G

f(u)dµR(u) =

∫
g

f(exp(ξ)) det

(
1− e−ad−ξ

ad−ξ

)
dξ,

(4)

where dξ denotes a Euclidean volume element in the vector
space g, and adξ : g → g and (1 − e−adξ)/adξ are given
in the Schur-Poincaré formula for the derivative of the ex-
ponential map (Theorem 3.1).

Proof. We begin by constructing a left Haar measure µL

for which an analogous formula holds, and then the re-
sult follows from the identity dµL(u) = dµR(u

−1). Let
dξ be the standard Euclidean volume element in the vec-
tor space g defined with respect to some choice of basis.
Thus dξ = dξ1 ∧ · · · ∧ dξn where (ξ1, . . . , ξn) are the co-
ordinates defined by the basis. The cotangent multi-vector
dξ|0 obtained by evaluating the form dξ at 0 ∈ g is then
a nonzero volume element at the identity of G. Now the
pullback formula

(dµL)u := L∗
u−1dξ|0

defines a top-degree form onG, which is left-invariant since

(L∗
vdµL)u =L∗

v(dµL)vu = L∗
vL

∗
u−1v−1dξ|0

=(Lu−1v−1 ◦ Lv)
∗dξ|0 = L∗

u−1dξ|0 = (dµL)u

for any v ∈ G. Thus dµL is a left Haar measure.
Now if f is an integrable function which is zero outside

of a neighbourhood of the identity onto which the exponen-
tial map is a diffeomorphism, then we have∫

G

f(u)dµL(u) =

∫
g

f(exp(ξ))(exp∗ dµL)(ξ),
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so we must compute exp∗ dµL. Fix ξ ∈ g, and let {t 7→
ξi(t) = ξ + tξi}ni=1 be the curves in g through ξ pointing
in the n coordinate directions. Let p(ξ) be the power series
(1− e−adξ)/adξ. Then we compute(

exp∗ dµL

)
ξ

(
ξ′1(0) ∧ · · · ∧ ξ′n(0)

)
=(dµL)exp(ξ)

(
exp(ξ1)

′(0) ∧ · · · ∧ exp(ξn)
′(0)

)
=L∗

exp(−ξ)dξ|0
(
Lexp(ξ)p(ξ)ξ

1 ∧ · · · ∧ Lexp(ξ)p(ξ)ξ
n
)

=dξ|0
(
p(ξ)ξ1 ∧ · · · ∧ p(ξ)ξn

)
= det(p(ξ)).

Here, the first equality follows from the definition of the
pullback, the second from Theorem 3.1, the third from the
definition of dµL and the final from the fact that the top-
degree wedge product of a linear map is equal to its deter-
minant, together with the identity dξ|0(ξ1 ∧ · · · ∧ ξn) =
dξ1(ξ1) · · · dξn(ξn) = 1. It follows that

exp∗ dµL(ξ) = det

(
1− e−adξ

adξ

)
dξ,

hence

exp∗ dµR(ξ) = det

(
1− e−ad−ξ

ad−ξ

)
dξ

follows from the identities dµR(u) = dµL(u
−1) and

exp(ξ)−1 = exp(−ξ).

Finally we come to Theorem 4.5. To prove it, we require
the following topological result.

Lemma 2.2. [3, Proposition 3] Let Λ be a compact topo-
logical space, and let {Vλ}λ∈Λ be a family of open subsets
of some other topological space X . Then the intersection⋂

λ∈Λ Vλ is an open set in X .

Theorem 4.5. Let f : G → R be a (possibly unbounded)
continuous function, andK ⊂ G a compact neighbourhood
of the identity. If f takes its maximum value over K only at
points in the interior of K, then there is an open neigh-
bourhood V of the identity for which maxu∈K Lv(f)(u) =
maxu∈K f(u) for all v ∈ V .

Proof. Let M denote the maximum value of f over K.
We will prove the theorem by showing that there ex-
ist an open neighbourhood V1 of the identity such that
maxu∈K f(v−1u) ≤ M for all v ∈ V1, and an open neigh-
bourhood V2 of the identity for which maxu∈K f(v−1u) ≥
M for all v ∈ V2. Then V := V1∩V2 will be an open neigh-
bourhood of the identity for which maxu∈K f(v−1u) =M
for all v ∈ V . In showing the existence of both V1 and V2
we will use the following observation. For each u ∈ G, let
αu : G → G denote the map v 7→ v−1u. Then by continu-
ity of the group operations, each αu is continuous. There-
fore, letting K◦ denote the interior of K (an open set), the

pre-image α−1
u K◦ ofK◦ under αu is open for every u ∈ G.

In particular, since f−1{M}∩K is contained in K◦ by hy-
pothesis, for all u ∈ f−1{M} ∩ K the set α−1

u K◦ is an
open neighbourhood of the identity.

Existence of V1 now follows easily. For each u ∈
f−1{M} ∩ K, let V1,u := α−1

u K◦ be the open neigh-
bourhood of the identity considered in the previous para-
graph. The set f−1{M} ∩ K is a closed subset of a com-
pact set, hence compact. Thus, by Lemma 2.2, V1 :=⋂

u∈f−1{M}∩K V1,u is an open neighbourhood of the iden-
tity such that v−1u ∈ K for all v ∈ V1 and u ∈ f−1{M} ∩
K. It follows that maxu∈K f(v−1u) ≥M for all v ∈ V1.

We now come to showing the existence of V2, which
will be an intersection over u ∈ K of open neighbour-
hoods V2,u of the identity, for which v−1u ∈ f−1(−∞,M ]
for all v ∈ V2,u and u ∈ K. Write K as the union
K1 ∪ K2, where K1 := K ∩ f−1(−∞,M) and K2 :=
K ∩ f−1{M}. For all u ∈ K1, the continuity of αu im-
plies that V1,u := α−1

u f−1(−∞,M) ⊂ α−1
u f−1(−∞,M ]

is an open set, which contains the identity since u ∈
K1. For u ∈ K2, we take V2,u to be the open neigh-
bourhood α−1

u K◦ ⊂ α−1
u f−1(−∞,M ] of the identity

described in the first paragraph. Now by Lemma 2.2,
V2 :=

⋂
u∈K V2,u is an open neighbourhood of the iden-

tity such that maxu∈K f(v−1u) ≤ M for all v ∈ V2, as
required.
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