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A. Experiment setup
We first summarize the regression problem before detailing the data collection and training process for each data set and

task. All models were implemented using PyTorch and trained on machines with up to eight NVIDIA V100 GPU cards.
We fit each regression function by minimizing a least squares problem using the Levenberg-Marquardt algorithm as

implemented by Scipy [27, 37]. The parameters for each function are initialized to either 1 or 0 depending on if they are
product or bias terms. To further help fit the data, we use weighted least squares where each subsequent point is weighted
twice as much as the previous point. This ensures that our regression model is tuned to better fit the curve for larger n.
Image classification tasks. For all experiments with CIFAR10 and CIFAR100, we use a ResNet18 [16] following the same
procedure as in [8]. For ImageNet, we use a ResNet34 [16] using the procedure in [8]. All models are trained with cross
entropy loss using SGD with momentum. We evaluate all models on Top-1 Accuracy.

For all experiments, we first create 10 subsets S0 ⇢ S1 ⇢ S2 ⇢ · · · ⇢ S9 = D0 containing 2%, 4%, 6%, . . . 20% of the
training data set, respectively. For example on CIFAR10, S0 contains 1000 images, S1 contains 2000 images, and so on. This
data is used to build our initial regression models. Thus, when we use n0 = 10% of the training data, our initial regression
data contains five points evaluating the score from training with 1000, 2000, . . . , 5000 images. For evaluation, we sample
D1 ⇢ D2 ⇢ D3 ⇢ · · · ⇢ D8 containing 30%, 40%, 50%, . . . , 100% of the training data set, respectively. In regression, we
evaluate our estimators on predicting Vf (Di) for each of these data sets.
VOC. We use the Single-Shot Detector 300 (SSD300) [25] based on a VGG16 backbone [33], following the same procedure
as in [10]. All models are trained using SGD with momentum. We evaluate all models on mean AP.

For all experiments, we create 8 regression subsets S0 ⇢ S1 ⇢ S2 ⇢ · · · ⇢ S7 = D0 containing approximately
2.5%, 5%, 7.5%, . . . 20% of the training data set, meaning n0 = 10% of the data corresponds to an initial regression data set
of four points. For evaluation, we sample D1 ⇢ D2 ⇢ D3 ⇢ · · · ⇢ D8 containing approximately 30%, 40%, 50%, . . . , 100%
of the full training data, respectively.
nuSenes (Detection). We use the FCOS3D network architecture [38], which received first place in the NeurIPS 2020
nuScenes 3-D detection challenge. We follow the same procedure from the original paper for training using SGD. We
evaluate on mean AP.

Because training this 3-D detector is computationally expensive, we only use a small number of points for these ex-
periments. We first create initial subsets S0 ⇢ S1 ⇢ S2 ⇢ S3 containing 5%, 10%, 15%, 20% of the training data set,
respectively. For evaluation, we sample D1 ⇢ D2 ⇢ D3 ⇢ D4 containing 25%, 50%, 75%, 100% of the training data set,
respectively.
BDD100K. We use Deeplabv3 [6] with ResNet50 backbone. We use random initialization for the backbone. We use the
original dataset split from [40] with 7k train and 1k validation set. The evaluation metrics is mean Intersection over Union
(IoU).

For all experiments, we first create 10 regression subsets S0 ⇢ S1 ⇢ S2 ⇢ · · · ⇢ S9 = D0 containing
2%, 4%, 6%, . . . , 20% of the training data set, respectively. For evaluation, we sample D1 ⇢ D2 ⇢ D3 ⇢ · · · ⇢ D8

containing 30%, 40%, 50%, . . . , 100% of the training data set, respectively.
nuScenes (Segmentation). We use the “Lift Splat” architecture [28], which is used for BEV segmentation from driving
scenes, following the steps from the original paper to train this model. We evaluate on mean IoU. Our data collection
procedure follows the same steps and percentages of the data set as used for BDD100K.

B. Further regression analysis
In this section, we provide regression plots visualizing each of the functions from Table 1 as well as error measurements

using the log of the prediction ratio, which is an alternative metric to RMSE. This analysis supports the three challenges
observed in Section 3.2 and reinforces the necessity of our simulation analysis.
Visualizing the regression models. Figure 6 plots the regression functions versus the ground truth for each of the regression
experiments in Section 4.2. These results support the RMSE errors given in Table 6. That is, when n0 = 50% of the full
data set, all of the functions are close to the ground truth curve, but when n0 = 10%, the regression functions can diverge
significantly. Moreover, the Arctan function is often the closest function to the ground truth, as reflected by RMSE.

We observe that the regression functions are almost always either optimistic (i.e. their curve is above the ground truth) or
pessimistic (i.e. their curve is below) over the entire range of the data set size. In particular, the Arctan function is one of the
two most pessimistic estimators for 19/21 plots, Algebraic Root for 13/21 plots, Logarithm for 7/21 plots, and Power Law



Figure 6. Regression plots showing mean±standard deviation of
multiple runs extrapolating performance in each task when trained on
small subsets of the data. The solid blue line in each plot represents
the ground truth performance.
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CIFAR10 10% 5 0.19± 0.1 0.06± 0.1 0.17± 0.1 0.17± 0.1
CIFAR10 20% 10 0.1± 0.0 0.01± 0.0 0.08± 0.0 0.04± 0.0
CIFAR10 50% 17 0.06± 0.0 �0.01± 0.0 0.04± 0.0 0.01± 0.0

CIFAR100 10% 5 0.1± 0.2 �0.12± 0.1 0.01± 0.2 0.06± 0.1
CIFAR100 20% 10 0.21± 0.0 0.05± 0.0 0.15± 0.0 0.27± 0.0
CIFAR100 50% 17 0.07± 0.0 �0.01± 0.0 0.07± 0.0 0.05± 0.0

ImageNet 10% 4 0.18± 0.1 �0.03± 0.0 0.14± 0.0 0.38± 0.0
ImageNet 20% 8 0.1± 0.0 �0.03± 0.0 0.09± 0.0 0.07± 0.0
ImageNet 50% 15 0.07± 0.0 �0.01± 0.0 0.05± 0.0 0.02± 0.0
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VOC 20% 4 0.02± 0.0 �0.0± 0.0 0.01± 0.0 0.01± 0.0
VOC 30% 6 0.04± 0.0 0.02± 0.0 0.03± 0.0 0.03± 0.0
VOC 50% 10 0.01± 0.0 0.01± 0.0 0.01± 0.0 0.01± 0.0

nuScenes 10% 2 0.15± 0.0 0.3± 0.0 0.02± 0.0 0.11± 0.0
nuScenes 20% 4 0.06± 0.1 �0.03± 0.1 0.04± 0.1 0.03± 0.1
nuScenes 50% 6 0.02± 0.0 �0.02± 0.0 0.01± 0.0 0.01± 0.0
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n BDD100K 10% 5 0.2± 0.1 0.17± 0.2 0.19± 0.2 0.14± 0.1

BDD100K 20% 10 0.08± 0.0 0.01± 0.0 0.05± 0.0 0.08± 0.0
BDD100K 50% 15 0.05± 0.0 �0.03± 0.0 0.03± 0.0 0.04± 0.0

nuScenes 10% 5 0.09± 0.0 �0.04± 0.0 0.07± 0.0 0.03± 0.1
nuScenes 20% 10 0.01± 0.0 �0.1± 0.0 �0.02± 0.0 �0.07± 0.0
nuScenes 50% 15 0.01± 0.0 �0.08± 0.0 �0.01± 0.0 0.03± 0.1

Table 5. Mean±standard devia-
tion of multiple runs evaluating the
mean log relative ratio for extrapo-
lating performance in each task when
trained on small subsets of the data.
We report n0 in terms of the percent-
age of the true data set. The low-
est error (i.e. smallest positive value)
for each setting is bolded. Given
50% of the data, there is always at
least one regression function achiev-
ing a log ratio less than 0.03, whereas
with n0 = 10% of the data, we may
achieve ratios as low as �0.12 or as
high as 0.2 (i.e. an order of magni-
tude higher error compared to perfor-
mance with n0 = 50%).

for 0/21. This leads us to conclude that Arctan is generally a pessimistic estimator whereas Logarithmic and Power Law
are generally optimistic. Algebraic Root lies in the middle. We hypothesize that this is because when ✓3 is held constant,
both Arctan and Algebraic Root converge to a finite value as n ! +1 (i.e. they flatten), but Power Law and Logarithm are
unbounded.

Finally, we remark on the shape of the ground truth curves. Recall from Section 3.2 that we observe the ground truth score
function v(n) to be piecewise linear, concave, and monotonically increasing. Figure 6 shows that this observation generally
holds for CIFAR10, CIFAR100, ImageNet, and the two nuScenes tasks. However for VOC and BDD100K, we observe that
the curves are not always concave and monotonically increasing. Nonetheless, our observations about using regression to
evaluate data requirement estimation persists. Moreover, our proposed techniques for estimating data requirements remain
effective, emphasizing that the initial observation of v(n) from Section 3.2 is not a theoretical requirement but a motivating



Architecture n0 r Power Law Arctan Logarithmic Algebraic Root

ResNet18 (baseline) 10% 5 34.38± 35.1 13.3± 5.3 17.25± 21.8 26.29± 16.8
ResNet18 (baseline) 20% 10 29.52± 3.9 4.71± 2.0 19.87± 2.5 40.33± 1.5
ResNet18 (baseline) 50% 17 5.49± 0.2 0.69± 0.2 5.42± 0.2 3.65± 0.3

ResNet50 10% 5 275.98± 521.1 44.94± 41.7 49.43± 72.1 24.01± 7.1
ResNet50 20% 10 31.04± 13.1 4.14± 4.4 21.48± 8.3 37.73± 3.4
ResNet50 50% 17 6.57± 1.0 1.07± 0.8 6.71± 1.4 4.8± 1.7

ResNet101 10% 5 88.47± 115.3 25.53± 17.1 46.73± 60.9 26.96± 4.5
ResNet101 20% 10 47.34± 12.1 10.23± 4.7 32.35± 8.5 40.89± 1.5
ResNet101 50% 17 8.07± 0.3 0.78± 0.3 7.95± 0.3 5.57± 0.5

WideResNet-16-4 10% 5 34.38± 35.1 13.3± 5.3 17.25± 21.8 26.29± 16.8
WideResNet-16-4 20% 10 13.78± 1.8 0.99± 0.1 12.86± 0.6 12.55± 1.8
WideResNet-16-4 50% 17 5.35± 0.3 1.61± 0.4 4.24± 0.3 1.55± 0.5

WideResNet-16-8 10% 5 57.7± 19.3 5.0± 3.8 33.34± 10.2 65.31± 2.2
WideResNet-16-8 20% 10 14.01± 1.8 1.04± 0.3 13.62± 1.2 12.74± 1.7
WideResNet-16-8 50% 17 5.57± 0.2 1.87± 0.1 4.32± 0.2 1.4± 0.2

Table 6. For different
architectures with CI-
FAR100, mean±standard
deviation of multiple runs
evaluating the RMSE
on extrapolating per-
formance when trained
on small subsets of the
data. The lowest error
for each architecture is
bolded. These results
reinforce the initial results
for CIFAR100 in Table 3,
as the Arctan function
consistently dominates in
nearly every setting.

Figure 7. The ratio of the amount of data collected versus the minimum data needed (y-axis) for different target V ⇤ (x-axis) in simulations
initializing with n0 = 10% of the data set. For each data set, we show simulations for T = 1, 3, 5 maximum rounds. The dashed black
line corresponds to collecting the least amount of data needed to reach V ⇤.

trend.
Alternative metrics to RMSE. When evaluating regression functions on their ability to estimate data requirements, we must
be able to differentiate between estimators that over- versus under-estimate model performance (and therefore under- or over-
estimate data requirements). Since RMSE is not a signed metric, it does not provide this information, and we consequently
explore alternative signed metrics. Table 5 evaluates each regression function on the log of the relative ratio of estimation
error log v̂(n;✓⇤)� log v⇤(n) when extrapolating to larger data sets. The log relative ratio is a signed metric where negative
values means that we are pessimistic (i.e. v̂(n;✓⇤) < v⇤(n) on average) and positive values means that we are optimistic.
Ideally, we want the smallest positive log relative ratio.

Unlike Table 3, the Arctan function does not consistently dominate on any individual task when evaluating on the log
relative ratio. However, Table 5 also does not reveal any clear best performing regression function. Specifically, Power Law,
Arctan, Logarithmic, and Algebraic Root each rank the best 4, 7, 7, and 8 times, respectively. This result supports our belief
that evaluating regression error alone does not permit us to identify a good data collection policy.

C. Ablations on different architectures
In this section, we further explore CIFAR100 and repeat the previous experiments but with different architectures, to show

that our results are consistent even with larger models. Specifically, we observe that with small data sets, estimating data
requirements is more difficult and that moreover, regression error does not give a complete picture in terms of determining
a good data collection policy. Comparing against the baseline ResNet18, we consider ResNet50 and ResNet101 as well as
WideResNet-16-4 and WideResNet-16-8 [41]. All models are trained in the exact same setup.

Table 6 reports RMSE from fitting each regression function with n0 = 10%, 20%, 50% of the data. Similar to the baseline,
the Arctan function is almost always the best performing regression function. Figure 7 plots the ratios of the amount of data
collected versus the minimum data required for each of the alternative architectures. ResNet50 and ResNet101 follows the



Figure 8. Experiments where the score function Vf (D) corresponds to the AP of each individual class from the nuScenes data set. All plots
show mean±standard deviation. (Left columns) Regression plots extrapolating performance of each individual class. (Right columns) The
ratio of the amount of data collected versus the minimum data needed for different target V ⇤ in simulations initializing with n0 = 10% of
the data set. We fix T = 5 and apply the correction factor fit using CIFAR10. The dashed black line corresponds to collecting the least
amount of data needed to reach V ⇤.

same trends as the baseline ResNet18 (see Figure 3) in that Arctan significantly over-estimates the data requirement, even
though it presents the lowest RMSE among the regression functions. The WideResNets show a slightly different picture.
Here, although Arctan does not always over-estimate the requirement for all V ⇤, it is nonetheless, the most pessimistic
estimator and recommends collecting more data than the other functions.

D. The data collection problem for class specific metrics
In many applications, we may be motivated to collect data in order to improve on a specific class. In this section, we

explore scenarios where the score function Vf (D) is a class-specific metric. We consider 3-D object detection over the
nuScenes data set. For every class, we perform regression and simulation over the entire data set after setting Vf (D) to be
the AP for that specific class. That is, we use the same setup and data collection as described in Appendix A but now fit our
regression models to the class-specific metric.

Figure 8 (left) plots regression analysis for each class when n0 = 10% of the data. We first observe that the ground truth
v(n) are not always concave, monotonically increasing functions. In particular, the bicycle, construction vehicle, and truck
classes contain situations where performance slightly decreases after increasing data. Moreover, these three classes are also
the classes with the lowest AP even after training with the full data set. Finally, all of the regression functions, including
the Arctan function, tend to be optimistic for most of the classes. In particular, only the traffic cone class features multiple
pessimistic regression functions. These results suggest that in general, it can be more difficult to fit regression curves for
individual class-specific metrics as opposed to fitting for mean AP.

Figure 8 (right) plots simulation results after employing the ⌧ fit from CIFAR10 data for T = 5 rounds. Here, we
demonstrate the effectiveness of our general recipe (i.e. to use T = 5 rounds and incorporate a correction factor ⌧ ). That
is, for most of the classes, the Power Law, Logarithmic, and Algebraic Root functions consistently achieve ratios between 1
to 3. These methods achieve their poorest performance for the bicycle and construction vehicle classes, as these classes are
naturally the most noisy and thus more challenging for estimating the data requirement.

It is worth noting that Arctan continues to over-estimate the data requirement by large margins for six out of nine classes,
even though the regression plots themselves show that the Arctan function is optimistic. This behavior is due to the fact
that we have T = 5 rounds to meet the data requirement. For instance in the first round when our initial data set contains
2, 813 images, we will significantly under-estimate the data requirement. After the first round however, we will have added
a new data point into our regression set and re-fit the Arctan function. It is likely that after this first round, the next Arctan
function will be pessimistic. As a result in the second round, we would over-estimate the data requirement, leading to the
corresponding curve. Since the simulations show Arctan to over-estimate, we conclude the pessimistic nature of the Arctan



Figure 9. Experiments evaluating three different active learning strategies on CIFAR100 with n0 = 20% of the data set and T = 5
rounds. (Left) regression plots showing mean±standard deviation extrapolating performance. (Right) The ratio of data collected versus
the minimum data needed (y-axis) for different target V ⇤ (x-axis) in simulations.

function is generally consistent across data sets and tasks, likely being a factors of the function and the model fitting process.

E. The data collection problem with active learning
Although all of our experiments so far have considered collecting data by randomly sampling data points from a fixed

training data set, we can also consider structured techniques such as active learning, where data is collected and labeled using
sample efficient strategies. In conventional active learning, we would collect a pre-determined budget of B data points each
round over T rounds to attain the best possible final model. Instead, if we are given a performance target V ⇤, we can use our
data collection framework to dynamically choose a budget Bt to collect in each round for up to T rounds.

Figure 9 plots experiments of data collection for CIFAR100 when using three active learning strategies, k-centers [31],
Least Confidence [32], and Max Entropy [32], rather than random sampling. Figure 9 (left) demonstrate regression analysis
for each strategy when initializing with n0 = 20% of the data set. We use a larger initial set than in the previous experiments
because the ground truth learning curves are not always concave monotonically increasing, especially in the lower data
regimes. By giving a sufficiently large initial data set, the regime of extrapolation is stable and does not contain erratic trends.

Figure 9 (right) show our simulation analysis for T = 5 rounds of data collection using each active learning strategy. We
set ⌧ = 0 since the previous correction factor values were designed from random sampling and with an initial n0 = 10% of
the data set. Nonetheless, this simulation approximates the scenario where we would dynamically choose the budget before
each active learning round for up to T rounds. These plots validate that our main empirical findings all hold regardless of
the specific techniques used in collecting data. For each active learning strategy, all four of the regression functions achieve
ratios between 0.8 and 1.1. Furthermore, Arctan typically over-estimates the data requirement whereas the others are more
likely to under-estimate the requirement.


