Supplementary Material:
Reversible Vision Transformers

Karttikeya Mangalam™
Chao-Yuan Wu Bo Xiong

Appendix

This appendix contains further details for the main pa-
per and is organized as follows: §A gives further architec-
tural design details of both the Rev-ViT (Table A.1) and
the Rev-MViT models (Table A.2). §B specifies training
details including the pseudo-code for backpropagation (Al-
gorithm 1) as well as hyperparameter settings for datasets
across all tasks followed by a miscellaneous discussion of
our work’s potential impact on democratizing large model
training (§C.1) & future work in speeding up large trans-
former training (§C.2) from a distributed systems view.

A. Architecture Details

Reversible Vision Transformers Table A.1 shows the
architectures for all the Reversible Vision Transformer Mod-
els. All models closely follow the original ViT architec-
tures [1] in matched performance, parameters, FLOPs and
much lower memory footprint (Table 1). Output sizes de-
note the tensor shapes of the two residual streams at the
end of each reversible Vision Transformer block. Note that
even though the intermediate activations are twice the non-
reversible variant, the actual memory needed is much lower
because of memory reuse in reversible training. Further, the
FLOPs are matched since each layer is performed only one
of the two streams.

Reversible Multiscale Vision Transformers Table A.2
shows the architecture for the Rev-MViT-B model for image
classification. The backbone is made-up of two stages —
Stage-transition blocks that increase the channel capacity
and down-sample the resolution and the reversible Stage-
preserving blocks that form the majority of computation
without changing feature dimensions. Similar to the Rev-
ViT architecture, the output sizes o f both the streams are
denoted. Fusion blocks operate on Y7 and Y5 together, hence
operate with computationally light operations (Table 6).

B. Training Details

Reversible Back-propagation Pseudo-code. Algorithm 1
shows the peudocode for reversible backpropagation through

Haoqi Fan
Christoph Feichtenhofer*

Yanghao Li
Jitendra Malik

stage operators output sizes

data 224 x224

1x16x16, 384 et oA

pateh - ide 1 16 16 384x14x14
rev [F: MHA(384) | 12 [Yy :384x14x14]
| G : MLP(1536) | Yy : 384x14x14 |

(a) Rev-ViT-S with 4.6G FLOPs, 22M param, 8.8MB/img
memory, and 79.9% top-1 accuracy.

stage operators output sizes
data 224%224
patch 1x16x16, 768 768x 14 14

stride 1 X 16X 16
[F: MHA(768) | 12 [Y1 :768x14x14]
G : MLP(3072) x Yo 1 768x14x 14
(b) Rev-ViT-B with 17.6G FLOPs, 87M param,
17MB/img memory, and 81.8% top-1 accuracy.

rev

stage operators output sizes
data 224224
patch Ix16x16, 1024 1024% 14x 14

stride 1 x16x 16
F : MHA(1024) Y7 : 1024 x14x 14
G : MLP(4096) Yo 1 1024 x14x 14
(c) Rev-ViT-L with 61.6G FLOPs, 305M param,
22.6MB/img memory, and 81.4% top-1 accuracy.

rev

}x24

Table A.1. Reversible Vision Transformer Architectures: Rev-
ViT are reversible adaption of ViT with exactly matched FLOPs,
parameters and accuracy under identical conditions but with much
lower GPU memory footprints.

the Rev-ViT-B block implemented in a similar fashion to
Reversible ResNets [3]. The reversible transformation output
01,03 is inverted to re-materialize the input activations
1, I, which are then used to calculate the gradients of the
parameters with respect to the loss function £. Further, the
gradients of the outputs VO, and VO; are propagated
using chain rule and intermediate activations to calculate the
gradients of the input V.17 and V- Is.

While the pseudo-code routine delineates the procedure
of Rev-ViT-B, a similar routine can handle stage preserving
Rev-MViT Block simply by replacing the Multi-head atten-
tion (MHA) with the Multi-head pooling attention (MHPA)
operation. Finally, since the stage transition Rev-MViT
Block is non-reversible, automatic differentiation with acti-
vation caching is used to back-propagate through it.

stage operators

data 224x224

7%7,96

stride 4 x4

F : MHPA(0) | [Y1 : 96X56%56]
G : MLP(384) Ys : 96X56%56

[FUSION(192)]

MHPA(192) | x1

MLP(768)

[’F:MHPA(]%)'} 1 [Y7 0 1922828 }

output sizes

cubification 96 X56 X 56

Stage-Preserving

Stage-Transition 192x28 %28

Stage-Preserving| | " vy peres) Ya : 192X28%28
[FUSION(384)]|
MHPA(384) | x1
MLP(1536)

F : MHPA(384)
G : MLP(1536)
[FUSION(768)]
MHPA(768) | x1
| MLP(3072) |
F : MHPA(768) |, Y : T68X7Tx7
G : MLP(3072) Ya 1 768X7X7

Stage-Transition 384 x14x14

Stage-Preserving x 10

Y: : 384x14x14
Y, : 384x14x 14

Stage-Transition T68XTxT

Stage-Preserving

Table A.2. Rev-MViT-B with 8.7G FLOPs, 39M param,
66.8MB/img memory, and 82.5% top-1 accuracy is reversible adap-
tion of MViT-B architecture [1].

Training Hyperparameter ViT-B Rev-ViT-B
Learning Rate le-4 Te-5
Random augment Repeats (N) 1 2
Random augment Magnitude (M) 9 7
Optimizer Momentum (0.9, 0.95) (0.9, 0.999)
Weight Decay 0.3 0.3
Batch Size 4096 4096
Epochs 200 200
Label Smoothing 0.1 0.1
Drop Path Rate 0.2 0.2
Mixup 0.8 0.8
Cutmix 1.0 1.0

Table A.3. Training Recipe for ViT-L and Rev-ViT-L

ImageNet. Table A.3 shows the training recipes for ViT-L
and Rev-ViT-L models presented in Table 1 of the main paper.
Note that ViT-L is quite heavy with 61.6 GFLOPs and hence
we adopt a shorter 200 epochs recipe for faster experiment
cycle for developing Rev-ViT-L. Smaller ViT models — ViT-S
and ViT-B — are trained according to the Data efficient trans-
formers [6] and are all trained for 300 epochs. Hence, the
accuracy difference between ViT-L which achieves 81.5%
while ViT-B achieves 81.8% overall. MViT-B model follows
the 300 epochs recipe as well proposed in [2].

Kinetics-400 & Kinetics-600. We follow the recipes pro-
posed in [2] to train the Rev-MViT-B architecture (Table A.2)
with crucial modifications in augmentations, as discussed in
paper (Table 5).

MS-COCO. For object detection experiments, we adopt
the Mask R-CNN [4] object detection framework in Detec-
tron2 [7]. We follow the same training settings from [?],

AdamW optimizer [5] (81, 82 = 0.9,0.999, base learning
rate 1.6e—4 for base size of 64, and weight decay of 0.1),
and 3x schedule (36 epochs). The drop path rate is set as
0.4. We use PyTorch’s automatic mixed precision during
training.

All the proposed models, recipes and pretrained models for
all the datasets will be made publicly available as well.

Algorithm 1 Backpropagation Through Rev-ViT Block

1: function REVVIT-BP((O1, O3), (V:.01,V.05))
2: z+ 04
3: I + Oy — MHA(Z)
4: I + O — MLP(IQ)
> Automatic differentiation to calculate V, & V7, .
5. Vez 4 V.01 4+ V.MHA(z) V.15
. Vel + V.05 + V,MLP(L) V.2
Vle < VLZ
> Automatic differentiation for V,,,; » & Vi ua-
. Vewwmpp < Ve MLP(I3) 'V, 21
9 VownmnA Vs MHA(2) V.0,
10: return ([;,I5) and (V.[1,V.[5) and
(Vewwmma, Vewsep)
11: end function

C. Discussion

C.1. Democratizing Large Model Training

Visual recognition backbones support a great variety of
machine learning workloads in various forms and walks
of life. Yet, the current research on large models remains
constrained by the necessity of access to expensive GPU clus-
ters that are required to train these models. Most research
groups, including a large part of academia, cannot afford to
develop these models because of these towering compute
requirements. Efforts like ours, on memory-efficient high
performing visual recognition backbone training democra-
tizes the training of large models to several more groups
with more limited compute budgets. For example, with a
15.5x per-example training memory reduction, Rev-ViT-L
can be trained on a single 8-GPU machine with the training
recipe (with the same batch size) that is developed with 16 8-
GPU machines (128 GPUs) for the ViT-L model. We hope
that this democratization of large-scale allows other research
groups to meaningfully contribute to this exciting research
direction and decentralizes large-scale model development.

C.2. Faster Model Training

Reversible Vision Transformers change the order of com-
putation in the backpropagation step of network training. Re-
computation in backward order substitutes the intermediate

activation caching in forward pass, which allows an over-
all memory footprint reduction during training. Naturally,
this activation rematerialization introduces some additional
computational load in the backpropagation step. However,
this is comfortably compensated for deep models that yield
higher training throughput despite the computational burden
because of the furnished lighter memory footprint.

Further, the additional back-propagation computational
burden can also be overcome for smaller models. Trans-
former training is in a memory-bound regime, a reversible
network specific distributed training schedule can signifi-
cantly lighten or even completely hide the additional back-
propagation latency behind the memory-bandwidth bottle-
neck (i.e. time spent in moving data from DRAM GPU
memory to the SRAM and compute).

The sequential nature of first recomputing activations and
then using them for gradient calculation can be substituted
for a well instrument low-level kernel that can compute
the activations in sync with the gradients in the backward
pass. Conceptually, this would be much faster than the
sequential implementation while analytically resulting in
identical gradients. This requires a different focus from
that of this work but can potentially speed-up the training
throughput multiple times for reversible architectures and
would make for excellent future work.

Acknowledgements. The authors would like to thank Har-
shayu Girase for help with benchmarking models; Amir Gho-
lami, Ajay Jain and Nikita Kiatev for helpful research dis-
cussions and reference suggestions; Assaf Shocher, Matthew
Tancik and Hang Gao for writing discussions and Shubh
Gupta, Suzie Petryk, Hang Gao, Abhinav Agarwal, Med-
hini Narasimhan and Amur Ghosh for proofreading the
manuscript and debugging typos; and BAIR industry collbo-
ration programs for providing computing resources.

References

[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In Proc. ICLR, 2021. 1,2

[2] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In Proc. ICCV, 2021. 2

[3] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B
Grosse. The reversible residual network: Backpropagation
without storing activations. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems,
pages 2211-2221, 2017. 1

[4] Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Girshick.
Mask R-CNN. In Proc. ICCV, 2017. 2

[5] Ilya Loshchilov and Frank Hutter. Fixing weight decay regu-
larization in adam. 2018. 2

[6] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers amp; distillation through
attention. In icml, 2021. 2

[7]1 Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo,
and Ross Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019. 2

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

