
Supplementary Materials for DAD-3DHeads: A Large-scale Dense, Accurate
and Diverse Dataset for 3D Head Alignment from a Single Image

1. DAD-3DHeads Dataset
The images in DAD-3DHeads dataset are anonymised

without additional metadata. The results of labeling in the
form of 3D head model do not contain any private or sen-
sitive information. The data gathered is not being used for
identification purposes or in connection with any other per-
sonal data.

1.1. Dataset card

As stated in Section 3.2 of the main paper, along with the
dataset of images and annotations, we provide additional in-
formation per image such as gender, age, illumination con-
ditions, image quality, pose, presense of expression, and oc-
clusions (see Fig. 7 here and Fig.3 in the main paper). We
also provide more visual examples from the dataset, and
demonstrate the DAD-3DHeads diversity in terms of eth-
nicity, age, gender, camera pose, expressions (see Fig. 8).

We use multiple sources to construct our dataset, among
which WIDER FACE dataset [12], the Adience dataset [4],
Compound Facial Expressions of Emotions Dataset [3],
WFLW [11], AFW [14], Helen [8], LFPW [2].

1.2. DAD-3DHeads annotations accuracy

We provide more visualizations of the results of DAD-
3DHeads annotations compared to GT scans on neutral
faces from NoW dataset [9] in Fig. 9. This is in addition
to (and in the context of) Figure 4 in the main paper.

1.3. Annotation process

We provide here more details along with visuals to pre-
vent possible misunderstandings around the labeling pro-
cess. The full video is available via the project webpage.

As was already mentioned in the Sec.3.1, the annotators
do not explicitly control or label either the 3DMM param-
eters or the blendshapes. They also do not have to dis-
ambiguate between identity and expression. The annota-
tors only have to ”pin” a 3d head model - a mesh - to the
head image. They do so iteratively having the initial generic
mesh optimized after every ”pin” being placed (see Fig. 1).
The nonlinear optimization is performed, indeed, over the
shape and expression parameters, along with the pose.

Figure 1. The mesh is being deformed due to the under-the-hood
optimization after the ”pin” is placed on the ear.

Figure 2. The rendered texture here has ”holes” due to the occlu-
sions, but can also be ”torn” if the ”pins” are placed poorly.

After each step, the annotators can inspect if the fitted
mesh aligns well with the image in several ways: they might
view (i) the reprojected set of selected landmarks that corre-
spond to the recognizible features on any face or head (see
Fig. 6 as an example), such as contours of the eyes (eye-
lash line), lips, etc.; (ii) the image rendered onto the mesh
as a texture given the fitting - it helps to inspect if there ap-
peared texture ”holes” due to poor labeling or occlusions
(see Fig. 2); (iii) the mesh itself is visible in 360o to inspect
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if the skull shape is not deformed (see Fig. 2, right). These
measures help to partially overcome limitations introduced
by the absence of camera parameters for the input images,
thus possible ambiguities caused by the effects of perspec-
tive projection.

Another important issue is that our annotations consist
only of the 3D vertices and transformation matrices, we do
not interpret the resulting mesh w.r.t. identity, expression,
or any other ambiguous and ill-defined over a single-image
input feature. The concerns arise as there might be cases,
e.g., faces with extreme expressions, where it is impossible
to perfectly detect the shape of the head with neutral ex-
pression based on a single image. Indeed, the 3D scanners
would provide an accurate 3D head model that the manual
annotation cannot guarantee. However, they operate under
controlled capture, i.e., 3D scans have been in-the-lab in-
stead of in-the-wild. We provide the community with the
complementary data. It has a known trade-off in accuracy,
but the performance is sufficient for many applications that
operate in-the-wild.

2. Experimental results on DAD-3DHeads
benchmark

2.1. 3D Landmark localization

We evaluate the state-of-the-art methods such as JVCR
[13], FaceSynthetics [10], 3DDFA-v2 [6], and proposed
DAD-3DNet on DAD-3DHeads benchmark for the task of
3D Landmark Localization. We report normalized mean
error (NME) for the predicted landmarks reprojected onto
the image plane (see Tab. 1). We analyse the NME metric
on full test dataset as well as across challenging subgroups
(atypical poses, compound expressions, heavy occlusions).
DAD-3DNet shows superior performance in all cases.

When computing NME of the competitor methods, we
only use the images where the landmarks have been local-
ized, otherwise the NME is ill-defined. See examples where
the landmarks are not localized in Fig. 10, along with other
challenging cases.

Performance on the ”Expr.” subset is better than the over-
all average (Table 1) for all of the methods. We attribute
this to the fact that for heavily occluded faces and large
extreme poses, where the landmarks are not clearly visi-
ble (and therefore the emotions), the images are labeled as
”neutral” by default.

2.2. DAD-3DNet performance across multiple sub-
groups

We present an extension of Table 4 from the main pa-
per, performing in-depth analysis of the results across mul-
tiple subgroups. We define subgroups w.r.t. pose (front,
side, atypical), age (child, young, middle age, senior), im-
age quality (high, low), occlusions (true, false), expressions

Model NME↓
Overall Pose Expr. Occl.

3DDFA-V2 [6] 3.580 7.630 3.168 3.195
FaceSynthetics [10] 4.363 15.781 3.159 4.934
JVCR [13] 4.455 12.514 3.843 4.949
DAD-3DNet 2.302 6.049 1.748 2.036

Table 1. 3D Landmark Localization on DAD-3DHeads bench-
mark. We compute the normalized mean error (NME, the lower
the better) on full test dataset as well as on challenging atypical
poses (Pose), compound expressions (Expr.) and heavy occlusions
(Occl.) subsets. DAD-3DNet performs superior in all cases.

.

Pose NME Z5 Accuracy Chamfer Dist. Pose Error

front 1.496 0.965 3.146 0.089
side 2.257 0.952 3.180 0.143
atypical 6.190 0.916 4.027 0.343

Age NME Z5 Accuracy Chamfer Dist. Pose Error

child 1.662 0.960 3.546 0.103
young 2.421 0.953 3.178 0.150
middle 2.438 0.955 3.393 0.133
senior 1.756 0.958 2.989 0.113

Quality NME Z5 Accuracy Chamfer Dist. Pose Error

high 2.065 0.957 3.194 0.129
low 4.755 0.928 3.643 0.259

Occlusion NME Z5 Accuracy Chamfer Dist. Pose Error

True 4.242 0.9436 3.784 0.1986
False 2.134 0.955 3.182 0.1359

Expression NME Z5 Accuracy Chamfer Dist. Pose Error

Non-neutral 1.156 0.959 3.412 0.116
Neutral 1.644 0.950 3.088 0.164

Lighting NME Z5 Accuracy Chamfer Dist. Pose Error

Standard 2.350 0.954 3.182 0.142
Non-standard 2.235 0.954 3.569 0.142

Table 2. In-depth analysis of the benchmark results reported in Ta-
ble 4 of the main paper across multiple subgroups such as camera
pose, age, image quality, occlusions, expressions, lighting. This
analysis shows robustness of the proposed approach across vari-
ous conditions (distribution shifts) in-the-wild.

(neutral, non-neutral), lightning (standard, non-standard).
The results of the DAD-3DNet model are reported in 2. This
analysis shows robustness of the proposed approach across
various conditions (distribution shifts) in-the-wild.

2.3. 3D Head Pose Estimation

The comparison of DAD-3DNet with the state-of-the-art
3D Head Pose Estimation method img2pose [1] is provided
in Tab. 3. We calculate two metrics on the rotation matrices
R1 (GT) and R2 (prediction), similar to Table 2 in the main
paper: (i) Frobenius norm of the matrix I −R1R

T
2 , and (ii)

the angle in axis-angle representation of R1R
T
2 .



Method ||I −R1RT
2 ||F Angle error (degrees)

Img2Pose [1] 0.226 9.122
DAD-3DNet 0.138 5.360

Table 3. 3D Head Pose estimation on DAD-3DHeads bench-
mark. DAD-3DNet outperforms state-of-the-art img2pose [1].
The measure of R1R

T
2 deviation from identity matrix lies in the

(0, 2
√
2) range [7].

2.4. Failure cases

DAD-3DNet still sometimes fails on some cases of se-
vere occlusions, extremely low quality, or very atypical
poses (like faces upside-down) (see Fig. 3). Our current
model was trained with no augmentations, this creates a
suitable venue for future explorations.

Figure 3. Failure cases of DAD-3DNet on DAD-3DHeads bench-
mark, 3D Landmark Localization.

3. Miscellaneous
Zn Metrics. We measure performance of DAD-3DNet

via Zn for different values of n, see the results in Fig. 4. The
accuracy does not change dramatically with n, so for DAD-
3DHeads benchmark we use n = 5 as a trade-off between
computational complexity and robustness.

”Head” and ”face” mesh vertices. In the paper, we re-
fer to two subsets of the FLAME mesh vertices: ”head” and
”face”. The former ones are used in the loss terms calcu-
lation (see Shape+Expression loss and Reprojection loss in
Sec. 4.2) and in the Zn accuracy measurements for DAD-
3DHeads benchmark (see Sec. 5.1), and the latter ones -

Figure 4. ZN accuracy of DAD-3DNet for different values of n.
x-axis is in log-scale.

in the Chamfer distance measurements for DAD-3DHeads
benchmark (see Sec. 5.1). We provide visual examples of
what these subsets represent on meshes with various head
shape and face expressions in Fig. 5.

Figure 5. ”Face” and ”head” subsets of FLAME mesh vertices.
Upper row: ”face”, capture frontal part of the head without ears.
Lower row: ”head”, capture the head without neck. The eyeballs
are excluded in both.

Various number of landmarks. As DAD-3DHeads
dataset is dense, it allows for training different models, lo-
calizing many more than the usual 68 landmarks [5]. This
flexibility saves the human annotator efforts, because the
data should not be relabeled every time a different setup
is needed. Moreoever, DAD-3DNet training pipeline al-
lows for inference on any subset of head vertices, given its
3DMM prediction branch, as they can be subsampled af-
ter the entire mesh is predicted (see examples of different
landmark subsets in Fig. 6).



Figure 6. DAD-3DHeads dataset allows for flexibly choosing the
desired landmark subset for predicting as many dense landmarks
as needed. Left to right: 68 landmarks [5], 191 landmarks, 445
landmarks.



Figure 7. Attribute labels (gender, age, illumination, and image quality) and the distribution across ethnic groups in DAD-3DHeads.



Figure 8. DAD-3DHeads dataset, more visual examples. The source images cover large variation in poses [2, 4, 9, 11, 14, 16, 18-20],
expressions [3, 6, 7, 8, 15], occlusions [1-3, 8, 19], non-standard illumination conditions [6, 13, 14], low image quality [2, 4, 13].



Figure 9. DAD-3DHeads accuracy on selected samples from the NoW dataset. First row: input image; second row: GT scan; third
row: the result of our annotation; fourth row: alignment of the mesh (wireframe) and the GT scan (with color-coded errors overlayed).



Figure 10. Qualitative comparison of DAD-3DNet and state-of-the-art methods on challenging cases from DAD-3DHeads benchmark.
Left to right: 3DDFA-v2 [6], FaceSynthetics [10], JVCR [13], DAD-3DNet (ours), ground truth.



Figure 10. Qualitative comparison of DAD-3DNet against state-of-the-art methods on challenging cases from DAD-3DHeads benchmark
(cont.) Left to right: 3DDFA-v2 [6], FaceSynthetics [10], JVCR [13], DAD-3DNet (ours), ground truth.



Figure 10. Qualitative comparison of DAD-3DNet against state-of-the-art methods on challenging cases from DAD-3DHeads benchmark
(cont.) Left to right: 3DDFA-v2 [6], FaceSynthetics [10], JVCR [13], DAD-3DNet (ours), ground truth.
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