Appendix for What makes transfer learning work for medical images:
feature reuse & other factors
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Figure 9. Feature similarity between the initial and the fine-tuned
model for WT initialization. CKA feature similarity comparison
between WT initialized models before and after fine-tuning. Re-
ported for each dataset (rows) and model type (columns). Evi-
dently, models with low inductive bias (fist two columns) indicate
strong feature reuse on the early layers. On the other hand, mod-
els with strong inductive biases (last two columns) appear a more
uniform pattern throughout the network. Note that for all models,
more data seem to affect more high-level features.

Appendix overview Here, we provide further details and
results from the experiments carried out in this work. Sec-
tion A provides further experiment details and supplemen-
tary figures for the feature similarity experiments. Section
B for the layer-wise k-NN evaluation experiments. Section
C for the layer-wise re-initialization and Section D for the
{5 weight distance experiments. In Section E we show the
mean attended distance for DEIT-S using different initial-
ization schemes. In Sections F and G, we provide additional
details for the convergence speed and the architectures we
used to evaluate the behaviour of different model capaci-
ties. In Section H, we describe in detail the modules used
for the WT-ST-n/m initialization schemes and the interme-
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Figure 10. Feature similarity between WT and ST fine-tuned mod-
els. CKA feature similarity comparison between WT and ST ini-
tialized models, calculated at each layer. Reported for each dataset
(rows) and model type (columns). The results indicate that for
models with low inductive bias, like DEITs, the early layers of ST-
initialized networks have increased similarity with early-to-mid
layer features from the WT-initialized model, suggesting that the
ST-initialized model learns more global features in the early lay-
ers. On the other hand, models with strong inductive biases, like
RESNETS50, seem to learn similar features regardless their initial-
ization, suggesting that inductive biases may somehow naturally
lead to similar features.

diate layers that we used for the re-initialization, {5, k-NN
and representational similarity experiments. Finally, in Sec-
tion I we provide additional details for the 5-layer DEIT-S
model and we show that it performs comparably with the
full 12-layer model.

A. Feature similarity

Details of the feature similarity calculations. The fea-
ture similarity throughout this work is measured using Cen-
tered Kernel Alignment (CKA). CKA computes the feature
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Figure 11. Feature similarity of WT and ST fine-tuned models
for different feature-types. CKA feature similarity comparison be-
tween WT and ST initialized models in DEIT-S, using three dif-
ferent token types (CLS, Patches, CLS + Patches), for each dataset
(columns) and embedding type (rows). Evidently, the emergence
of global features in the early layers of ST initialized models is as-
sociated mainly with the patch tokens (which represent the image
patches) whilst the CLS token learns different features depending
on its initialization.
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Figure 12. Feature similarity between initial and fine-tuned model
for ST initialization. CKA feature similarity comparison between
ST initialized models before and after fine-tuning. Reported for
each dataset (rows) and model type (columns). As we can see,
models with no inductive biases exhibit changes throughout the
network, while models with increased inductive bias focus more
on the mid-to-high layers during training.

similarity between two representations, allowing us to com-
pare those of different layers and/or different models. For
a more detailed description of CKA see [34] and [31]. The
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Figure 13. Predictive performance of features at different depths
using k-NN evaluation. k-NN evaluation performance at different
depths for models initialized with varying WT fractions, reported
for each dataset (rows) and model type (columns). Overall the k-
NN performance increases monotonically with depth for all mod-
els and datasets. However, relative performance gains from layer
to layer exhibit different patterns. CNNs improve progressively,
while ViTs increase rapidly in the beginning and then they reach a
plateau. This plateau is observed to appear in association with the
first ST-initialized layer in the WT-ST-n/m experiments.

similarity scores reported in these experiments follow the
procedure described in [31]. For each setting the values are
calculated by measuring the similarity over the full test set,
in batches of 128. This is done for all five runs of each set-
ting, and we report the mean similarity score averaged over
all runs. The intermediate layers of the models that were
used for calculating similarities could be seen in Table 2
and Table 3 in the Appendix and the results can be found
in Figure 3 in the main text and Figures 9, 10, 11 and 12 in
Appendix.

B. k-NN evaluation

We use k-NN evaluation to investigate the discrimina-
tive power at different layers throughout the network.. The
evaluation is performed by comparing the similarity, in the
feature space, of samples from the training and the test set.
In particular, we use cosine similarity as the means to calcu-
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Figure 14. Maximum k-nn predictive performance of intermediate
features for different WI-ST-n/m initialization schemes. Similar
to Figure 13 relative gains exhibit different patterns of improve-
ment. Once again ViTs appear to improve quickly early on and
then plateau. However, this plateau has a negative slope in some
cases, suggesting the presence of strong biases in the high-level
features, possibly inherited from the pre-training task.
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Figure 15. Maximum k-nn predictive performance of intermedi-
ate features for different WI-ST-n/m initialization schemes when
using different feature types from DEIT-S for evaluation. Maxi-
mum k-nn evaluation score achieved at any depth for correspond-
ing WT-ST-n/m initialization fraction, for DEIT-S (/) using only
the c1s token’s activations, (2) using activations from the spatial
tokens, (3) concatenating (/) and (2). The different feature em-
beddings seem to exhibit similar trends , but the c1s token often
seem to outperform the patch embedding.

late the distance between different data-points. Then, labels
are assigned to the query data-point, from the test set, by
considering its k£ nearest neighbors from the training set.
Throughout this work we use £ = 200 . The layers used to
extract the embeddings are listed in Table 2 for CNNs and
Table 3 for ViTs. The results of the k-NN evaluation exper-
iments can be found in Figure 6 in the main text and Figures
13, 14 and 15 in the Appendix.

— wrsTe0

Networkdepth Network depth Network depth

Figure 16. Resilience of trained layers to change. We report the
performance when reverting a fine-tuned layer back to its origi-
nal state. This is done using one layer at a time, for each dataset
(rows) and model types (columns) for four different WT-ST-n/m
initialization strategies. The results show that layers with low ro-
bustness underwent critical changes during fine-tuning. In ViTs,
critical layers often appear at the transition between WT and ST.
CNNs on the other hand, exhibit poor robustness at the final lay-
ers responsible for classification, and also periodically within the
network at critical layers.

C. Re-initialization robustness

In the layer re-initialization experiments, we consider the
impact of reverting individual layer of the models to their
initial state. In detail, we initialize models with different
WT-ST-n/m schemes. Then, after fine-tuning, we reinitial-
ize a single layer at a time to its original state, while keep-
ing all the other layers unchanged. Finally, we evaluate the
model on the test set and measure the drop in predictive per-
formance.

For DEITs and SWIN, the intermediate modules include
the patchifier, the self-attention layers of each block sepa-
rately. For RESNET50, the modules include the first con-
volutional layer and the residual blocks of each stage. For
INCEPTION the modules consist of all the initial convolu-
tional blocks, and all the individual inception modules. A
detailed description of the layers that were used can be seen
in Table 2 and Table 3 in Appendix. The results of these ex-



Figure 17. {¢2 distance of the weights. We report the the mean
£y distances between the initial and trained weights for different
models with different initialization schemes. A large distance indi-
cates that the corresponding layer has changed significantly during
training.

periments can be seen in Figure 5 in the main text for DEIT
and Figure 16 for other model types.

D. /5 distance

In order to understand the extent that model’s weights
change during training, we calculate the ¢5 norm of the
weights before and after fine-tuning. In practice, for each
layer, we calculate the ¢ distances between the original
and fine-tuned weights and then we divide this value by the
number of the weights in the layer. The details of the lay-
ers used for each model can be seen in Table 2 and Table 3
in the Appendix. Figure 17 shows the the results for each
model and dataset individually, and Figure 4 in the main
text shows the distances averaged over all the datasets for
each model.

E. Mean attended distance

To understand the type of features that emerge at differ-
ent layer depths as a function of the initialization strategy
WT-ST for DEITSs, we calculate the mean attended distance
per layer. That is, for each of the DEIT-S’ attention heads
we calculate the mean of the element-wise multiplication
of each query token’s attention and its distance from the
other tokens, similarly to [11]. Then, we average the cal-
culated distances per layer for all of the WT-ST initializa-
tion schemes. In Figure 18 in the Appendix, we report the
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Figure 18. Mean attended distance for different initializations. We
report the mean attended distance of the fine-tuned DEIT-S model
for all datasets using different WT-ST initializations (WT fraction
from O to 1, where 0 = ST and 1 = WT). The bottom-right figure
shows the mean attended distance, averaged over all datasets. Ev-
idently, in the absence of WT layers the attention is mainly global,
whilst the IMAGENET pre-trained weights introduce a mixture of
local and global attention that the network cannot learn on its own.
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Figure 19. Convergence speed as a function of WT fraction for
different models and datasets. We report the number of iterations
it takes for each model to converge for different WT fractions for
each individual dataset. The bottom-right figure shows the relative
speedups averaged over all datasets. Evidently, the convergence
speed monotonically increases with the number of WT layers for
all datasets and models.

mean attended distance per layer for all datasets and the av-
erage attended distance over all datasets. The results clearly
show that (1) the ST initialization results in global attention
throughout the network (2) after the critical layers the atten-
tion is mainly global (3) the WT layers introduce a mixture
of local and global features. This suggests that the WT lay-
ers are important for a mixture of local and global features
that the model is incapable of learning on its own — due to
the small data size.

F. Model convergence

We investigate how the convergence behavior of the
models change as we transfer more layers. Figure 19 in the
Appendix and Figure 8 in the main text show the number
of iterations needed for each model to reach its best vali-
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WT-ST-4/3  Layer 4 Layer 4, Conv2d WT-ST-3/3  Stage 1 Stage 1, Block 2
Stage 1, Block 3

Stage 1, Block 1 — Type A Stage 2, Block 1

WT-ST-5/2  Stage 1 Stage 1, Block 3 - Type A Stage 2, Block 2

WT-ST-4/2  Stage 2

Stage 1, Block 3 — Type A Stage 2, Block 3

Stage 2, Block 4
Stage 3, Block 1
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Stage 3, Block 6
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Stage 2, Block 1 — Type B
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Stage 2, Block 3 — Type C
Stage 2, Block 4 — Type C
Stage 2, Block 5 — Type C

ST age 2
WTST6/1 - Stage 2 WTST-5/1  Stage 3

Stage 3, Block 1 - Type D
Stage 3, Block 2 - Type E | WT-ST-6/0  Stage 4
Stage 3, Block 3 — Type E

WT-ST-7/0  Stage 3

Table 2. Implementation details for the CNN models. (Left) Mod-
ules and layers used for INCEPTION. (Right) Modules and layers
used for RESNETs. The first column of each side shows the ini-
tialization type that we used. The module that corresponds to each
initialization scheme (second column from each side) is the last
module that we initialized with WT. The modules after that were
initialized with ST. The third row from each side shows the lay-
ers we used for the k-NN, /2, re-initialization and representation
similarity experiments.

dation performance. As a general trend for all models, the
higher the WT fraction is, the faster the models converge.
Interestingly, for vision transformers, transferring the first
few blocks dramatically increases the convergence speed,
while transferring further blocks slightly speeds up training.
CNNs however, follow a different trend, where transferring
more layers improves the convergence speed at a roughly
linear rate.

G. Model capacity

We investigate the impact that the model’s capacity has
on transfer learning for DEITs [39] and RESNETs [16]. To
this end, we consider 3 different capacities for each archi-
tecture, which are comparable in the number of parameters
and compute time. For the RESNET family, we considered
RESNETI18, RESNET50, and RESNET152. For the DEIT
family, we chose DEIT-T, DEIT-S, and DEIT-B. For each
model capacity, we carry out the same WT-ST-n/m experi-
ments. That is, we initialize each model with different WT-
ST-n/m initialization schemes and then we fine-tune them
on the target task. The training strategy follows exactly the
details mentioned in Section 2. Please refer to to Figure 8
and Section 3 for the results and discussion.

H. The WT-ST initialization schemes

Here, we provide additional details regarding the WT-
ST-n/m initialization procedure and the modules we used to
investigate where feature reuse occurs within the network.
We transfer weights (WT) up to block n and we initialize
the remaining m blocks using ST. In practice this means
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WT-ST-12/2  Block 11 WT-ST-12/2  Stage 4, Block 1

Block 12 — Attention
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WT-ST-14/0  Layer norm WT-ST-14/0  Layer norm

Table 3. Implementation details for the ViT models. (Left) Mod-
ules and layers used for DEITs. (Right) Modules and layers used
for SWIN-T. The first column of each side shows the initialization
type that we used. The module that corresponds to each initializa-
tion scheme (second column from each side) is the last module
that we initialized with WT. The modules after that were initial-
ized with ST. The third row from each side shows the layers we
used for the k-NN, ¢2, re-initialization and representation similar-
ity experiments.

that, the first n modules use the exact ImageNet pretrained
weights, while the weights of the next m modules are ini-
tialised with a Normal distribution N (1;, 0;%), where p;
and ;2 are the mean and variance of the ith ImageNet pre-
trained weight.

Due to the architectural differences, we use a differ-
ent selection of modules for each model. For DEITs and
SWINSs, we use the input layer (patchifier), each of the
transformer blocks and the last normalization layer of the
network. For INCEPTION we use the first four modules
which include the layers that operate at the same scale and
the inception modules that belong to the same stage. Fi-
nally, for RESNETs we include the input layer, the first nor-
malization layer and the resnet blocks from each scale. The
exact details for each WT-ST-n/m setting for RESNET50,
RESNET18, RESNET152 and INCEPTION can be found in
Table 2 in the Appendix. Similarly, the details for DEIT,
DEIT-T, DEIT-B and SWIN-T are found in Table 3 in the
Appendix. The results of these experiments are reported in
Figure 2 and 7 in the main text.

I. The S-layer DEIT-S model

As we showed in Figure 2 and Figure 6 of the main text,
it appears that vision transformers benefit significantly from
weight transfer in their initial-to-middle blocks, while trans-



ferring the weights in the later blocks seems to offer little or
no benefit. In fact, transferring weights too deep into the
network may result in worse high-level features, possibly
due to biases learned during the pre-training task. Further-
more, we noticed from the layer-wise experiments that crit-
ical layers often appear at the transition between WT and
ST. This begs the question: Can we use a smaller DEIT
model that has been initialized with weight transfer without
compromising classification performance?

To this end, we use a trimmed version of a DEIT-S model
that has only five transformer blocks — effectively reducing
the memory and computational requirements by a factor of
2. We initialize this model, denoted as DEIT-S-5b, with
weight transfer from IMAGENET and we fine-tune it on the
target datasets, using the settings described in Section 2.
Surprisingly, our results in Table 4 showing no significant
changes in classification performance. This supports the ar-
guments that: /) the initial blocks of ViTs contribute the
most to the overall performance of the model, 2) feature
reuse in the first layers is so strong for DEITs that can com-
pensate for the lack of additional transformer blocks.

This finding might be of further interest for practition-
ers who work with limited computational and memory bud-
gets. For example, in medical imaging, there is a need for
light-weight models as the large image sizes that are en-
countered in practice prohibit the utilization of large mod-
els. However, further evaluation is needed to asses the ex-
tent to which these benefits are broadly applicable.

Model APTOS2019, ~ T DDSM, AUC T ISIC2019, Rec. ©  CheXpert, AUC T  Camelyon, AUC 1
n = 3,662 n =10,239 n = 25,333 n = 224316 n = 327,680
DeiT-S 0.894 £ 0.017 0.949 £ 0.011 0.824 £ 0.008 0.792 £ 0.001 0.962 £ 0.003

DeiT-S-5b 0.894 £ 0.005 0.951 £ 0.001 0.812 £ 0.016 0.792 £ 0.001 0.962 =+ 0.004

Table 4. A trimmed DEIT-S with only 5 blocks performs compa-
rably to the full DEIT-S model. We keep only the first 5 (out of
12) blocks of DEIT-S and discard the rest. Then, after WT initial-
ization, we fine-tune the model with the same strategy detailed in
Section 2. It can clearly be seen that the smaller model performs
competitively to the full DEIT-S, even when more than half of the
blocks are removed.
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