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This Appendix provides (a) additional technical details
about training and inference (Section A), (b) implementa-
tion details per dataset (Section B), and (c) qualitative re-
sults (Section C), to supplement our main paper. These are
not included in the main paper due to space constraints.

A. Additional technical details
In this Section we provide additional technical details

that were not included in the main paper due to space con-
straints:

• In Section A.1, we add more details about our training
approach.

• In Section A.2, we describe our approximate inference
approach.

A.1. Training

To optimize the final hybrid objective (Eq. 10) using
Stochastic Gradient Descent, we approximate the expecta-
tion for the reconstruction loss term of the CVAE loss (Eq.
11) using a Monte-Carlo estimator, with S region samples
z
(s)
t drawn from qφ(zt | Y,R, I), where S is a hyperparam-

eter:
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To backpropagate gradients of the reconstruction loss
term all the way to the parameters φ of the inference model
through the sampling, as our latent variables are discrete,
we sample from the Gumbel-Softmax [1, 8] continuous ap-
proximation of the categorical distribution qφ with tempera-
ture τ . This distribution converges to one-hot samples from
the categorical distribution when τ → 0 and it allows us
to use the reparameterization trick [4] to compute (biased)
gradients w.r.t. parameters φ.

A.2. Approximate inference

Visual Object Grounding. Given an input image or video
and a ground-truth sentence Y , we address the VOG task
by inferring the latent word-to-region alignment for each
word of the sentence using the approximate posterior word-
to-region alignment distribution (CVAE-q) and using that to
select a region proposal:

b̂t = rj , where j = argmax
i∈{1,...,M}

qφ(zt,i = 1|Y,R, I). (2)

We also experimented with using the prior word-to-
region alignment distribution for grounding (CVAE-p). Al-
though this distribution suffers from the same limitation as
soft-attention, namely it does not take into account the word
being grounded, our experimental results suggest that it out-
performs soft-attention:

b̂t = rj , where j = argmax
i∈{1,...,M}

pθ(zt,i = 1|y<t, R, I).

(3)

Both grounding approaches have the same computa-
tional complexity as popular grounding methods [17, 18]:
they require passing the sentence through a (Bi)LSTM and
applying an attention mechanism (similarity function) over
regions for each word.

We would like to clarify that our model assumes a sin-
gle latent region for each groundable word both for images
and videos. Therefore, given an input video and a tex-
tual description, each groundable word is localized with a
bounding box in a potentially different frame of the video.
However, we would often like to ground words in particu-
lar frames of the video. To do this, we use a heuristic, i.e.,
we choose the region at frame l with maximum q-attention
coefficient (or p-attention coefficient):

b̂t,l = rj , where j = argmax
i∈Jl

qφ(zt,i = 1|Y,R, I), (4)

where Jl is the set of region indices extracted from frame l.
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Grounded Visual Description. For the task of GVD, we
follow a two-stage approach: first we generate a sentence
and then we ground the generated words. Similar to Zhou
et al. [17], we perform greedy decoding for sentence gener-
ation, i.e. we predict a word y∗t at each timestep t and feed
it as input to the next timestep. In particular, each next word
can be predicted by using the marginal word distribution:

ŷt = argmax
yt

E
zt∼pθ(zt|y∗

<t,R,I)
pθ(yt|zt,y∗<t, R, I), (5)

The marginal word distribution can be approximated via
Monte Carlo sampling:

ŷt = argmax
yt

1

K

∑
pθ(yt|z(k)t ,y∗<t, R, I), (6)
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{
z
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t
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are K samples drawn according to

pθ(zt|y∗<t, R, I). However, doing so is computationally ex-
pensive. Instead, we feed the expected value of zt:

ŷt = argmax
y

pθ(yt| E
zt∼pθ

[zt],y
∗
<t, R, I). (7)

Observe that Ezt∼pθ [zt] = aθ(st, X) ∈ RM , i.e. the
expected value of zt is equal to the attention coefficients
computed by the p-attention network. Therefore, Eq. 7 can
be rewritten as:

ŷt = argmax

[
softmax

(
MLPθ

[
M∑
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a
(i)
θ (st, X)xi; st

])]
.

(8)

Note that pθ(yt|Ezt∼pθ [zt],y
∗
<t, R, I) is a first-order

Taylor approximation of the expectation in Eq. 5. If we
choose to use a single layer MLP for word prediction:

gθ(st, zt, X) = softmax

(
Wc

[
M∑
i=1

zt,ixi; st

])
, (9)

yt | y<t, zt, R, I ∼ Cat(gθ(st, zt, X)), (10)

then pθ(yt|Ezt∼pθ [zt],y
∗
<t, R, I) is also valid lower bound

of Ezt pθ(yt|zt,y∗<t, R, I), since the single layer MLP is
a convex function (composed of a linear mapping and the
softmax function) of zt and we can apply Jensen’s inequal-
ity. Using the expected value of zt serves as a shortcut
to avoid sampling, thus retaining the same computational
complexity as discriminative encoder-decoder captioning
methods.

Given the generated sentence Ŷ , we can use the prior
(Eq. 3) or approximate posterior (Eq. 2) word-to-region
alignment distributions to ground the generated words.

B. Additional experimental details
In this section we provide additional details about the

models and the experimental setup of the experiments re-
ported in the main paper. Note that we provide detailed
implementation details for each dataset. Most of our mod-
ules and hyperparameters are either following the setup
GVD [17] or are shared between datasets.

• In Section B.1, we describe the implementation de-
tails and experimental setup for our experiments on the
Flickr30k Entities dataset. We also report the standard
deviations for our reported results on the Flickr30k En-
tities test set, compare our GVD-CVAE with baselines
on the Flickr30k Entities test set, report the standard
deviations for our reported results on the Flickr30k En-
tities test set, and plot learning curves in Fig. 1.

• In Section B.2, we describe the implementation details
and experimental setup for our experiments on the Ac-
tivityNet Entities dataset. We also provide standard
deviations for our reported results on the ActivityNet
Entities validation set.

• In Section B.3, we describe the implementation de-
tails and experimental setup for our experiments on
the YouCook2 dataset. We also provide an extended
version of Table 6 with additional metrics and method
details (Table 3), and results on the validation set (Ta-
ble 4).

• In Section B.4, we discuss average runtime, comput-
ing infrastructure and the open-source codebases and
public datasets that we used in our experiments.

B.1. Additional experimental details for Flickr30k
Entities

Implementation and experimental setup for the results
reported in Table 4 of the main paper (GVD-CVAE):

Inputs. We use the same region proposals and features as
Zhou et al. [17]. For each image, we use a Faster R-CNN [9]
detector with ResNext-101 [15] backbone pretrained on Vi-
sual Genome [5] to obtain region proposals. In particular,
we retain the top 100 region proposals per frame, based on
their detection confidence score. Each region is described
by a 2048-dimensional feature vector extracted from the
fc6 layer of the ResNext-101. Same as GVD [17], we also
use a global feature vector of size 2048 describing the im-
age to be captioned. We use a vocabulary of 8639 words
including UNK (the symbol for rare words not included in
the vocabulary) and EOS (end of sentence special symbol).
Words are embedded to a 512-dimensional vector using ran-
domly initialized embeddings, trained from scratch, same as
in GVD [17].



Model. The pre-extracted region features, image convo-
lutional features and global image feature are transformed
into x, F and v by our trainable encoder (which mirrors the
encoder of GVD [17]). In particular, the region embedding
consists of the concatenation of: a linear projection of the
fc6 region feature (initialized with the fc7 layer weights
of the object detector), a 300-dimensional trainable embed-
ding of the 4-dimensional position of the bounding box co-
ordinates, and a 481-dimensional vector of object classifica-
tion scores obtained by applying a trainable object classifi-
cation layer on top of the fc7 feature. Note that these object
classification scores are also used in our inference model
when γ = 1. 1 After normalizing these 3 components with
layernorm, they are concatenated and passed through a lin-
ear projection that projects to a lower-dimensional space of
dimensionality 1024. This serves as our grounding-aware
region embedding [17] xi. Similarly, the convolutional fea-
tures and global image feature are projected with two linear
transformation layers to a lower-dimensional space of di-
mensionality 1024, yielding F and v, respectively. Our de-
coder has at its core a two layer (hierarchical) LSTM of hid-
den size 1024 (Eq. 5). The convolutional attention fθ(·, ·) is
a ‘concat’ attention mechanism of attention size 512, which
takes in the convolutional feature map F and determines by
the hidden state ut how significant each feature map column
should contribute to generate a word (f (l)θ (ut, F )). The
same holds of the region attention kθ(·, ·). Our p-attention
network is an ‘concat’ attention mechanism with attention
size 512. Our full inference model consists of a Bi-LSTM
with hidden size 1024 and a q-attention network with dot-
product attention mechanism (α(i)

φ (ht,x) ∝ hTt Wxi). It
also uses information about object classes from an external
dataset (γ = 1).

Training. We train our model for 40 epochs with the
Adam [3] optimizer, having an initial learning rate of 2e−4,
decayed by a factor 0.8 every 3 epochs. Our batch size is
40 images and S = 10, τ = 0.8. Note that we start train-
ing with λ = 0 for 20 epochs and then add the ELBO loss
and jointly optimize the cross-entropy and ELBO losses
(λ = 0.5). For annealing β, we use the PI-Controller [11],
with Ki = −0.0001, expkl = 0.06, Kp = 0.01. Hy-
perparameters were either borrowed by GVD or were cho-
sen based on Box accuracy on the validation set. We ap-
ply dropout 0.5 on fully-connected layers. All layers are
trained from scratch, except for the backbones yielding the
initial region and image features. Ground-truth captions are
truncated to 20 words during training and testing.

1We would like to emphasize that this object class knowledge from pre-
trained object detectors cannot substitute the full supervision of annotated
bounding boxes per groundable word, since many words do not belong in
the classes of the object detector, and grounding a word is a different task
than object detection; we need to localize the referred entity instead of all
entities belonging to an object class.

Note that to fairly compare with methods that use Rein-
forcement Learning for finetuning the captioning model, we
also finetuned our decoder and prior networks with SCST
using CIDEr as the reward (GVD-CVAE-SCST). Since the
goal of this experiment was to show that our decoder can
be finetuned with RL to match the performance of SoTA
models in captioning, we chose to finetune a simpler model
(hence the small reduction in weakly-supervised grounding
from 33.8 to 31.6 - Table 4 in our main paper, last 2 rows).
In particular, we used a simpler model that was trained with
our hybrid loss until epoch 38 (with an LSTM inference net-
work and γ = 0) and then finetuned with SCST until epoch
60, with learning rate 5e− 5 and batch size 48.

Evaluation. We evaluate our model (the checkpoint at the
end of training) on weakly-supervised object grounding and
grounded captioning on the validation and testing sets. We
use the GVD metrics and evaluation scripts for evaluating:
captioning and grounding 2. This yields the reported result
in Table 4, row 11 (GVD-CVAE).

B.2. Additional experimental details for ActivityNet
Entities

Implementation and experimental setup for the results
reported in Table 5 of the main paper.

Inputs. We use the same region proposals and features as
Zhou et al. [17]. For each frame, we use a Faster R-CNN [9]
detector with ResNext-101 [15] backbone pretrained on Vi-
sual Genome [5] to obtain region proposals. In particular,
we retain the top 100 region proposals per frame, based on
their detection confidence score. Each region is described
by a 2048-dimensional feature vector extracted from the
fc6 layer of the ResNext-101. We also combine that region
feature with a 300-dimensional trainable embedding of the
bounding box coordinates (including the normalized frame
index) and a 432-dimensional vector of object classifica-
tion scores (yielding the grounding-aware region encoding
of GVD [17]). We also use a global feature vector of size
3072 describing the video segment to be captioned, which
is obtained by averaging the temporal sequence of frame-
wise appearance and motion features from [17]. Follow-
ing GVD [17] the global feature vector is augmented with a
50-dimensional embedding of the segment positional infor-
mation (i.e., total number of segments, segment index, start
time and end time). We use a vocabulary of 4905 words
including UNK (the symbol for rare words not included in
the vocabulary) and EOS (end of sentence special symbol).
Words are embedded to a 512-dimensional vector using ran-
domly initialized embeddings, trained from scratch, same

2https : / / github . com / facebookresearch /
grounded - video - description / blob /
44411533ea967244867a6b186a9b5cebba476015 / eval _
grd_flickr30k_entities.py

https://github.com/facebookresearch/grounded-video-description/blob/44411533ea967244867a6b186a9b5cebba476015/eval_grd_flickr30k_entities.py
https://github.com/facebookresearch/grounded-video-description/blob/44411533ea967244867a6b186a9b5cebba476015/eval_grd_flickr30k_entities.py
https://github.com/facebookresearch/grounded-video-description/blob/44411533ea967244867a6b186a9b5cebba476015/eval_grd_flickr30k_entities.py
https://github.com/facebookresearch/grounded-video-description/blob/44411533ea967244867a6b186a9b5cebba476015/eval_grd_flickr30k_entities.py


Table 1. Results on the Flickr30k Entities test set. Supplements Table 4 of the main paper with standard deviations and grounding results
from CVAE-p (the prior distribution is used for captioning in both GVD-CVAE-p and GVD-CVAE-q).

VOG GVD

Captioning Grounding

Feat Acc B@4 M C S F1all F1loc

GVD [17] G 21.4 26.9 22.1 60.1 16.1 3.88 11.7
GVD-Grd [17] G 25.5 26.9 22.1 60.1 16.1 3.88 11.7

GVD-CVAE-p G 30.4± 1.0 24.0± 0.6 21.3± 0.1 55.3± 1.3 15.7± 12.1 6.4± 0.2 18.1± 0.6
GVD-CVAE-q G 33.7± 0.4 24.0± 0.6 21.3± 0.1 55.3± 1.3 15.7± 12.1 6.70± 0.5 19.2± 1.2

Table 2. Results on the ActivityNet Entities validation set. Supplements Table 5 of the main paper with standard deviations for our
GVD-CVAE.

VOG GVD

Captioning Grounding

Acc B@4 M C S F1all F1loc
GVD [17] 14.9 2.28 10.9 45.6 15.0 3.7 12.7
GVD-Grd [17] 21.3 2.28 10.9 45.6 15.0 3.7 12.7

GVD-CVAE 23.9± 0.5 1.90± 0.03 10.4± 0.03 41.8± 0.4 13.3± 0.1 5.8± 0.4 21.7± 1.6

as in GVD [17]. In summary, we use the same inputs as the
compared methods: GVD [17] and Cyclical [7].

Model. Following GVD [17], the pre-extracted region fea-
tures and global video feature are transformed into x and
v by our trainable encoder, i.e. a linear mapping to a
lower-dimensional space of dimensionality 1024. Similarly,
frame-wise global features F are encoded with a Gated Re-
current Unit (GRU) with hidden size 1024. Our decoder has
at its core a two layer (hierarchical) LSTM of hidden size
1024. The temporal attention is an ‘concat’ mechanism of
attention size 512, which takes in the sequence of frame-
wise feature vectors F and determines by the hidden state
ut how significant each frame should contribute to gener-
ate a word (f (l)θ (ut, F )). Same for the region attention. So
far, the architecture and hyperparameters are the same as
GVD. For the rest, we used the architecture and hyperpa-
rameters selected on the F30k validation set (which is an
image dataset).

Training. We train our model with the same hyperparame-
ters as F30k. We only adjusted the learning rate for a larger
batch size and reduced the number of epochs (for faster
training). Namely, we set a batch size of 60 videos, a learn-
ing rate of 3e − 4 and trained for 30 epochs, reporting val-
idation results with the model obtained at the end of train-
ing. Following [17], we uniformly sample 10 frames from
each video segment during training and testing. Ground-
truth captions are truncated to 20 words during training and
testing.

Evaluation. We evaluate our model (the checkpoint at the
end of training) on weakly-supervised object grounding and
grounded captioning on the validation set. Unfortunately,
the official CodaLab evaluation server3 was closed at the
time of submission. We use the official metrics and evalua-
tion scripts for evaluating: captioning4 and grounding5.

B.3. Additional experimental details for YouCook2

Implementation and experimental setup for the results
reported in Table 6 of the main paper:

Inputs. We use the same region proposals and features as
Shi et al. [12]. For each frame, we use a Faster R-CNN [9]
detector with VGG-Net [13] backbone pretrained on Visual
Genome [5] to obtain region proposals. In particular, we
retain the top 20 region proposals, based on their detec-
tion confidence score. Each region is described by a 4096-
dimensional feature vector extracted from the fc7 layer of
the VGG-Net. We also combine that region feature with a
300-dim trainable embedding of the bounding box coordi-
nates (including the normalized frame index). We also use a

3https://competitions.codalab.org/competitions/
20537

4https : / / github . com / LuoweiZhou /
densevid _ eval _ spice / blob /
bbab10c202e956266031a0dd6c791cba25b58e59 /
evaluate.py

5https : / / github . com / facebookresearch /
ActivityNet - Entities / blob /
aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/
eval_grd_anet_entities.py

https://competitions.codalab.org/competitions/20537
https://competitions.codalab.org/competitions/20537
https://github.com/LuoweiZhou/densevid_eval_spice/blob/bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py
https://github.com/LuoweiZhou/densevid_eval_spice/blob/bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py
https://github.com/LuoweiZhou/densevid_eval_spice/blob/bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py
https://github.com/LuoweiZhou/densevid_eval_spice/blob/bbab10c202e956266031a0dd6c791cba25b58e59/evaluate.py
https://github.com/facebookresearch/ActivityNet-Entities/blob/aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_entities.py
https://github.com/facebookresearch/ActivityNet-Entities/blob/aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_entities.py
https://github.com/facebookresearch/ActivityNet-Entities/blob/aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_entities.py
https://github.com/facebookresearch/ActivityNet-Entities/blob/aa5cd28383e5e9c63e875ada54057591a71509d9/scripts/eval_grd_anet_entities.py
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Figure 1. Comparison of learning curves for three schedules of the β hyperparameter on the Flickr30k training/validation sets. This figure
supplements ablation results in Table 3 of the main paper. The clipped linear annealing schedule (green) results in higher KL divergence
(the approximate posterior does not collapse to the prior) and in higher grounding accuracy. For this ablation study, we use a GVD-CVAE
with a simple LSTM decoder (and no attention mechanisms kθ and fθ over region and grid features). We also used a simple LSTM for the
inference model and γ = 0 (namely the approximate posterior sees the sentence up to the current word). This model corresponds to row 4
of Table 3 in the main paper.

WSL Task Method details Box accuracy (%) Query accuracy (%)
Caption. MIL Obj. Int. Frm. Sim. Reg. Sim. macro micro macro micro

Upper Bound 62.41 - - -
DVSA-frm [2, 12] 3 37.55 44.16 39.31 46.14
Zhou [12, 18] 3 3 3 35.08 42.42 36.69 44.34
NAFAE [12] 3 3 3 40.71 46.33 42.45 48.41
STVG [16] 3 3 3 41.63 47.02 43.40 48.98
SCL [14] 3 3 42.80 48.60 44.61 50.61

GroundR [10, 12] 3 19.94 - - -
GVD-CVAE (Ours) 3 38.00± 0.20 44.61± 0.09 40.57± 0.17 45.63± 1.80

Table 3. Grounding performance comparison on YouCook2 test set following the experimental setup of Shi et al. [12]. We compare
with methods that exploit various tasks for weakly-supervised learning (WSL): captioning (Caption.) or multiple instance learning (MIL).
Our captioning-based method is competitive with advanced MIL-based methods for weakly-supervised video object grounding and can
additionally perform grounded captioning. Obj. Int.: modeling inter-object spatio-temporal interactions, e.g. using self-attention. Frm.
Sim.: modeling word-to-frame similarity to better handle frames where the groundable word is occluded. Reg. Sim.: modeling similarity
among grounded regions across frames for a groundable word. (This table is the same as Table 6 in the main paper, but with additional
metrics and details about methods.)

global feature vector of size 3072 describing the video seg-
ment to be captioned, which is obtained by averaging the
temporal sequence of frame-wise appearance and motion
features from [19]. Following GVD [17] the global fea-
ture vector is augmented with a 50-dimensional embedding
of the segment positional information (i.e., total number of
segments, segment index, start time and end time). We note

here that MIL-based methods in this dataset do not use that
global feature vector. We use a vocabulary of 1009 words
including UNK (the symbol for rare words not included in
the vocabulary) and EOS (end of sentence special symbol).
Words are embedded to a 512-dimensional vector using ran-
domly initialized embeddings, trained from scratch (in con-
trast to Shi et al. [12], who use pre-trained GloVE word



Box accuracy (%) Query accuracy (%)
macro micro macro micro

Upper Bound 62.42 68.56 65.55 70.32
GroundR [10, 12] 19.63 - - -
DVSA-frm [2, 12] 36.90 44.26 38.48 46.27
DVSA-vid [2, 12] 36.67 43.62 38.20 45.60
MCOG [12, 18] 35.69 43.04 37.26 44.99
NAFAE [12] 39.54 46.41 41.29 48.52
STVG [16] 39.90 46.80 41.36 48.74
SCL [14] 41.94 48.46 43.46 50.45

GVD-CVAE (Ours) 38.85 45.91 40.54 48.01

Table 4. Grounding performance comparison on YouCook2 vali-
dation set following the experimental setup of Shi et al. [12].

embeddings for the groundable words).
Model. The pre-extracted region and global video features
are transformed into x and v by our trainable encoder, i.e.
a pair of two linear transformation layers that project fea-
tures to a lower-dimensional space of dimensionality 1024.
Our decoder has at its core a single layer LSTM of hid-
den size 1024. Our p-attention network is an ‘concat’ at-
tention mechanism with attention size 512. Our inference
model consists of an BiLSTM with hidden size 1024 and a
q-attention network with an ‘concat’ attention mechanism
of size 512.
Training. We train our model for 40 epochs with the
Adam [3] optimizer, having an initial learning rate of 1e−4,
decayed by a factor 0.8 when every 3 epochs. Our batch size
is 80 video segments and S = 10, τ = 0.8, and λ = 0.5.
The latter were chosen based on Box accuracy on the vali-
dation set. For annealing β, we use the PI-Controller [11],
with Ki = −0.0001, expkl = 0.1, Kp = 0.01. We ap-
ply dropout 0.5 on fully-connected layers. All layers are
trained from scratch, except for the backbones yielding the
initial region and video features. Following [12, 18], we
randomly sample 5 frames from each video segment during
training, while we use all frames (extracted at 1fps) during
testing. Ground-truth captions are truncated to 20 words
during training and whole captions are used during testing
(maximum sentence length 46 words).
Evaluation. We evaluate our model (the checkpoint at the
end of training) on the validation and testing sets using the
same experimental setup and metrics as in NAFAE [12]6.
We use the CVAE prior distribution to ground each ground-
able word in each frame. We made this choice, since CVAE-
p outperformed the CVAE approximate posterior (CVAE-q)
in the validation set of this dataset. As we discussed in our
main paper, our model assumes a single region grounding
each word. However, in YouCook2 the model is evaluated

6https://github.com/jshi31/NAFAE/blob/master/
lib/datasets/youcook_eval.py

for grounding words in every frame. This could be the rea-
son that, in contrast to the Flickr30k Entities and Activi-
tyNet Entities datasets, the CVAE-q (with macro box ac-
curacy 35.8%) does not clearly outperform CVAE-p (with
macro box accuracy 38.85%) in this dataset that evaluates
grounding in each frame.

B.4. Software

All models were implemented in Python using Pytorch
and are based on the Grounded Video Description (https:
//github.com/facebookresearch/grounded-
video-description) open-source code. Given pre-
extracted video and region features, a forward pass through
our model for performing grounding on 20 ActivityNet
videos (10 frames sampled from each, M = 1000) takes
0.7 seconds at a single Tesla K80 GPU. We train our models
on 4 GPUs and training lasts from around 6 to 24 hours de-
pending on the dataset (training on the ActivityNet Entities
video datasets lasts longer than trianing on the Flickr30k
Entities image dataset). These are the websites for the pub-
lic, benchmark datasets that we used in this work.

• Flickr30k Entities http : / / bryanplummer .
com/Flickr30kEntities/

• ActivityNet Entities https : / / github .
com / facebookresearch / ActivityNet -
Entities

• YouCook2-BB http : / / youcook2 . eecs .
umich.edu/download

C. Additional qualitative results
In this section we discuss in Fig. 2 some of the quali-

tative results presented in Figure 4 of the main paper. We
would like to emphasize that these qualitative results used a
simpler model. It uses a single LSTM in the decoder, single
LSTM in the inference model and γ = 0. It also anneals β
using a clipped linear schedule instead of the PI-Controller.
(It is the same model in row 4 of Table 3 in the main paper).
Qualitative results on ActivityNet Entities are demonstrated
in Fig. 3.

References
[1] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-

rameterization with gumbel-softmax. In International Con-
ference on Learning Representations, 2017. 1

[2] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39:664–676,
4 2017. 5, 6

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3, 6

https://github.com/jshi31/NAFAE/blob/master/lib/datasets/youcook_eval.py
https://github.com/jshi31/NAFAE/blob/master/lib/datasets/youcook_eval.py
https://github.com/facebookresearch/grounded-video-description
https://github.com/facebookresearch/grounded-video-description
https://github.com/facebookresearch/grounded-video-description
http://bryanplummer.com/Flickr30kEntities/
http://bryanplummer.com/Flickr30kEntities/
https://github.com/facebookresearch/ActivityNet-Entities
https://github.com/facebookresearch/ActivityNet-Entities
https://github.com/facebookresearch/ActivityNet-Entities
http://youcook2.eecs.umich.edu/download
http://youcook2.eecs.umich.edu/download


(a) Grounding based on the approximate posterior alignment corrects the localization of sunglasses.

(b) Our p-attention network (parameterizing the prior alignment) can correctly ground players, while additionally conditioning on the groundable words
corrects the localization of the ball.

(c) Our GVD-CVAE can accurately localize the small objects: bucket and hat.
(d) Failure case: Our approximate posterior alignment fails to disambiguate between the two men and the two shirts. In contrast, our prior alignment which
grounds based on: “[...] in a yellow”, accurately localizes the shirt. Grounding based on whole phrases (yellow shirt) instead of individual words might help
mitigate this issue.
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(a) Failure case: Although the man is localized, the bounding box is not tight enough. This is common because of the lack of bounding box annotations.
Moreover, singular and plural forms of words are converted to the same representation during training and testing, leading to sub-optimal grounding of
groups of objects.

(b) Kids and dogs are accurately localized.

(c) The woman and the accordion are correctly localized.

(d) Note how the model seems to ground the words at the frames that they are visible.

(e) Failure case: the model fails to ground the correct racket and the man. Modeling the dependencies between the regions grounding each word in the
sentence might help mitigate such issues.

Figure 3. Qualitative weakly-supervised object grounding results obtained on videos from the ActivityNet Entities validation set. For each
groundable word in a ground-truth caption, we show the aligned region that is the mode of the approximate posterior distribution (region
with the maximum q-attention network coefficient over all regions in the 10 equally-spaced frames). For this qualitative result, we use a
GVD-CVAE with a simple LSTM decoder (and no attention mechanisms kθ and fθ over region and grid features). We also used a simple
LSTM for the inference model and γ = 0 (namely the approximate posterior sees the sentence up to the current word). The grounding
accuracy of this model on ground-truth sentences of the validation set is 18% (our full model achieves a grounding accuracy of 24.2%, as
reported in Table 5 of the main paper).
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