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1. Further Experiments
We repeated the same set of experiments as described on

Section 5, but with a larger input window of 1000 ms instead
of 300 ms. As we can see in Table 1, the results across
all the models and features follow the same pattern with
an overall improvement, at the cost of an increase in the
number of parameters and inference time per model. The
inference time of these models make them non-practical to
use in real-time applications, such as interactive avatars in
video games or telecommunications.

We also found in both experimental setups, training the
models with an input of 300 ms and 1000 ms that traditional
audio feature representations such as phonemes and MFCC
did not generalize as well as deep-learning based represen-
tations on out-of-domain speech audio. A comparison of the
resulting animations is shown in the supplementary video.

2. Jaw Motion Analysis
In Figure 2 we visualized all the samples of both jaw

sensors LI (midsagittal) and LJ (parasagittal) in a 3D scat-
ter plot from three different views. As in can be seen,
our captured data follows the Posselt’s Envelope of Motion
(PEM) [1]. The PEM describes the range under which the
jaw can move due to the physiological constraints based on
the bones, muscles and tendons that form the jaw. For con-
text, we can see in Figure 1b that the reference frame of
our captured data is the following: the X-axis describes the
anteroposterior direction, the Y-axis the mediolateral direc-
tion, and the Z-axis the vertical direction. As carefully de-
scribed in [2], the jaw motion from a frontal view usually
follows a shield appearance as seen in Figure 2a. From a
sagittal or lateral view, it follows a prolonged fang shape as
shown in Figure 2b. While from a top view, the jaw motion
follows a diamond shape as the one displayed on Figure 2c.
Our visualization shows that our data follows such shapes
with undefined edges. The main reason being that the actor
did not do any extreme articulation during the capture ses-
sion, as he only uttered regular sentences at a normal pace

(a) Sensor Placement (b) Axis reference

Figure 1. Reference images. (a) Sensor placement on tongue, lips
and jaw. (b) Head-axis reference: X-axis describes the anteropos-
terior direction (back to front), Y-axis describes the mediolateral
direction (right to left), and Z-axis describes the vertical direction
(bottom to top).

and fast pace in a neutral emotion. This visualization sup-
ports that it would be appropriate to increase the variability
of the gesticulations during a capture session in future work.

3. Predicted Tongue Motion Analysis

We traced the predicted motion and compared it against
the ground truth on test data samples for a better under-
standing of our best model’s behavior beyond the tempo-
ral mean sample error. The trace visualization in Figure 3a
shows how the long motions are close to the ground truth.
However, the sensor’s positions have an overall shift to the
front of the mouth, as these depend on the predicted initial
position of the tongue at the beginning of the sequence. We
also found that the articulatory decoder network learned to
generate shortcuts on fast and complex motions which take
place within a small space. In Figure 3b, we can see a clear
shortcut on the motions of the Blade Left and Tongue Tip
sensors. These results are reasonable since the models were
trained only on a Mean Square Error loss leading the pre-
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Table 1. Model architecture evaluation using different audio feature representations. Models were trained with 1 s input windows of audio.
The error is the temporal MSE in mm calculated through the validation split. The number of parameters reported is the amount of trainable
parameters per architecture design. The inference time is the mean time over the validation split measured as ms per second of audio input.

Decoder \ Feature Phone MFCC DeepSpeech2 W2V-C W2V-Z Num. Parameters Inference [ms]

MLP 50:15 2.315 2.157 2.619 1.957 1.928 3.29 ×108 0.309

LSTM-1L 2.657 2.299 2.350 2.048 4.219 3.17 ×106 1.150
LSTM-2L 4.216 2.219 2.342 2.016 2.026 5.27 ×106 2.238
LSTM-5L 2.609 2.133 2.331 2.014 1.994 1.16 ×107 5.432
Bi-LSTM-1L 3.355 2.074 2.204 1.977 2.272 6.33 ×106 2.229
Bi-LSTM-2L 2.268 1.874 2.096 1.825 1.781 1.26 ×107 4.512
Bi-LSTM-5L 2.247 1.732 1.987 1.754 1.708 3.15 ×107 11.000

GRU-1L 4.195 2.213 2.283 1.943 2.001 2.38 ×106 1.144
GRU-2L 2.559 2.098 2.248 1.905 1.945 3.95 ×106 2.193
GRU-5L 2.570 2.003 2.235 1.908 1.943 8.68 ×106 5.339
Bi-GRU-1L 4.304 1.964 2.094 1.828 1.910 4.76 ×106 2.290
Bi-GRU-2L 2.206 1.784 2.091 1.744 1.714 9.48 ×106 4.439
Bi-GRU-5L 2.179 1.660 1.935 1.684 1.648 2.37 ×107 10.955

Transformer 2.349 2.393 2.139 1.926 2.044 5.049 ×107 3.552
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Figure 2. Different views for Posselt’s Envelope of Motion for
both jaw sensors LI and LJ: midsagittal (purple) and parasagittal
(blue) respectively.

dicted sensor position to a local minimum. Future work
should address these issues by adding more constraints to
the learning loss.

3.1. Landmark Pose Prediction Error Analysis

We analyzed the landmark position error of the model
predictions across all audio representations on the and sum-
marize the results in Figure 4.

(a) Long Motion (b) Prediction Shortcut

Figure 3. Visualization of 300 [ms] of predicted motion on a test
sample vs. ground truth. Ground truth is in gray and the predicted
motion is in color according to the sensor. (a) Shows an example
of a predicted long motion. (b) Shows an example of motion short-
cuts on prediction visible on Blade Left and Tongue Tip sensors.

Overall, the model trained with phonetic representation
shows the highest error followed by the model trained with
DeepSpeech2 audio features. The models trained using
MFCC and both Wav2Vec features follow a similar pattern
across all the landmark predictions.

The most accurate landmark prediction is the upper lip
(UL), with a mean error of 1.16 mm across all audio fea-
tures. The least accurate landmark is the tongue tip (TT)
with a mean error of 2.26 mm. Most of the errors oc-
cur while predicting landmark positions for the tongue and
lower lip (LL) as these points have the most significant
motion during an utterance. Midsagittal and parasagittal
jaw landmark (LI, LJ) predictions have lower error, which
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Figure 4. Landmark Prediction Error on the test set of the bidirec-
tional 5-layered GRU over all audio encodings. The error values
shown are the mean sample error in mm of each landmark.

seems reasonable since the jaw moves slower than the
tongue and lower lip in general.

4. Perceptual User Study
We conducted a pairwise perceptual user-study to evalu-

ate our generated animations using ten test sentences. The
range of jaw and tongue motion go from tongue visible
tongue motions to almost closed teeth. For each test sen-
tence, we generated four animations using: a) ground truth
(GT), b) prediction of our best model (pred), c) an anima-
tion taking the lips from GT and injecting the tongue anima-
tion from another sample (mismatch), and d) by removing
the tongue motion from GT (null). We generated six pair-
wise comparison videos per sample, presenting a total of 60
videos to 15 users and asked them to select the most realistic
animation from each pair.

The results shown in Figure 5 present the percentage of
users that preferred one animation over the other. As we
can see, most users prefer GT over the others (rows 1-3).
Moreover, an interesting finding from this user study reveals
that users prefer an animated tongue over a nullified tongue
motion, even when the tongue motion is not matching the
spoken sentence (rows 3-5). Finally, the fact that users pre-
fer GT over mismatch and pred over mismatch (row 2, 6)
proves the consistency of our estimations as most of the
users prefer pred over mismatch (row 6).

5. External Asset License Details
In this work, we used public tools and pre-trained mod-

els to encode the speech audio. We used the Montreal
Forced Aligner1 to extract the phoneme representations by

1https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
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Figure 5. Pairwise preference perception user-study results. GT:
Ground-truth animation; pred: predicted animation; mismatch:
tongue mismatched animation; null: nullified tongue animation

using the English acoustic model, which has an MIT li-
cense. To obtain the MFCC features, we used the Python
package Librosa2 released under the ISC license. For Deep-
Speech2 features, we used publicly available code3 and its
LibriSpeech pre-trained model4 released under the MIT li-
cense. Finally, we used the the large Wav2Vec pre-trained
model5 from the Fairseq6 package to encode the input au-
dio, both the package and the model are released under an
MIT license. As a final remark, LibriSpeech is a corpus
which comprises 1000 hours of diverse speech audio, and is
released under the CC BY 4.0 license.

The high quality animations shown in the supplemen-
tary video were created using the MetaHuman Creator7 tool
and rendered in Unreal Engine with permission from Epic
Games.
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Figure 6. Frames from the generated animation at inference time for a speech input incoming from a speaker not seen during training. For
each camera view, both predicted landmark locations and the solved animation rig outputs are shown.

Figure 7. Visualization of a few samples from the training speaker on test speech samples not in the training set. For each camera view,
both predicted landmark locations and the solved animation rig outputs are provided. As this is test data we can also show comparison to
the ground truth EMA landmark locations.


