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1 Theoretical Results
1.1 Proof of Lemma 1

Let us take D to be the training set; w.l.o.g. z is the point being removed. Let the residual dataset be D’ =
D\ z. Denote wy,,,;, as the weight parameters after doing a full Hessian update and wp,; as the weight
parameters after doing a FOCI selected Hessian update. In an ideal case, we want (wy.,.;, D)/ (wg,;1» D)
to be as close as possible to (w*, D). Note that we consider both (w*, D) and (w*, D’) to be 0 as we don’t
expect model parameters to change drastically for one sample once trained to convergence.

Lemma 1. The gap between the gradient residual norm of the FOCI Unlearning update in Algorithm I and
a full unlearning update via Eq. 4 in the main paper,

IVL(WEgoei D)2 = IV LWy D)2 (M
shrinks as O(1/n?).

Proof. Let w to be a network of many linear layers with possible activation functions; we can think of the
norm as the sum of norm of gradients for each layer. Hence, for any model parameters w and dataset D, we
have:

IVL(w, D)2 =Y |[VL(wi, D)||2 2
leL

FOCT identifies a subset T' C L slices or layers that are to be updated. Let R = L \ T be the remainder
of the network which is not updated. Hence, 2 for (wy,;, D’) can be written as:

IV LW i D)2 =Y IIVL (W g, D)2 3)
leL
= VLW Eges D)2 + D VLW, - D)2 @)
leT lER
= VL WEge D)2 + D IVL(w], D)2 )
leT lER

The last line follows from the fact that layers in R are not updated.

We will next show how for the remainder of the dataset D’, the changes in T propagate minimally when
there are a large number of data points, n in the training set.

W.L.O.G. assume that we have a 3 layer network with the form:

(L3(La(L1(x))) (6)

For the point being removed z := (x,y); let Lo be the intermediate layer which is selected for update by
FOCTI. Before the update, activations out of Ly are of the form as = Lo(L1(z)) = La(ay). After the update,
activations out of Lo can be written as:

dh = Ly(L1(2)) = Ly(ar) @)
= whay (8)
= (wa + )01 )
= Waa1 + G, a1 (10)
= ag + O, a1 1D



The Second line follows because L isn’t updated. For the following layer L3, we have as = L3(ag) before
the update. After,

ay = Lz(aj) (12)
= Lz(as + 6y,a1) (13)
= Lg(ag) + VL3(a2)5wZa1 + O((5w2a1)2) (14)
= Ls(az) + 0 + O((6u,a1)?) (15)

The first-order term goes to zero, as L3 has not been updated and we assume full model convergence.
For the [12] update.
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Hence, 512112 "2 Therefore, for large values of n, the third term in the equation above approaches 0. So,

ay = Lg(az). This shows that propagation is minimal. Similar arguments regarding null space for over-
parameterized deep networks have been mentioned in [3].
Now, looking back at the residual gradient norm, we have:

IV L@ D)2 = D IIVL Wi, DIz + Y IVL(w], D)2 an

leT IER

Based on the above argument of minimal propagation, the second term above goes to 0 for layers/slices in
R. Therefore,

IVL(Wggei» DIz =D [[VL(w;, D)2 (18)

leT

and as such the gap between this and the full update is only the difference on the set R, shrinking as O(1/n?).
O

1.2 Proof of Theorem 1

Theorem 1. Assume that layer-wise sampling probabilities are nonzero. Given (user specified) unlearning
parameters €, 0, the unlearning procedure in Algorithm I in the main paper is (¢', 6")—forgetting where ¢’ >
€,0" > & represent an arbitrary precision (hyperparameter) required for unleammg. Moreover; iteratively
applying our algorithm converges exponentially fast (in expectation) with respect to the precision gap, that is,
takes (at most) O(log log ) iterations to output such a solution where g. = ¢ —e > 0,gs =0'—§ > 0
are gap parameters.

Proof. Our proof strategy is to show that our update step in Algorithm 1 is a specific form of Randomized
Block Coordinate Descent (R-BCD) method. Then, we simply apply existing convergence rates of RBCD
for general smooth minimization problems. In particular, our method can be seen as an extension of SEGA
method in Corallary A.7. [4] where the descent direction is provided by using inexact inverse hessian metric
[6]. The key difference in our setup is that the sampling probabilities are computed using the CODEC
procedure instead of the random sampling at each step. We make the following three observation in our
setup that immediately asserts correctness of the procedure.



First, by our construction in equation (11) in the main paper, the sampling probabilities have full support.
That is, the probability of selecting a particular weight in the neural network is strictly positive since & ~
N(0,02),0 > 0 is a continuous distribution which has unbounded support. Second, the overall rate of
speed of convergence depends on the condition number of the (fixed) Hessian at the optimal solution since
exact (¢, ) unlearning is equivalent to linear least squares problem. Third, our update step is equivalent to a
projected (or sketched) primal step, see equation 13 in (ArXiv Version [7]). From these observations, we can
see that our overall method is equivalent to SEGA in [4] or its noisy extension since we use only a small set
of samples (to be unlearned) at each iteration. Consequently, we obtain the deterministic geometric rate of
convergence (in expectation) by applying Corollary A.8. where ¢ in their paper corresponds to the ¢ —e > 0
gap in our setup. Now, to get the probabilistic €, ¢’ unlearning guarantee for the solution presented by our
algorithm, we use Lemma 10 in [12] on the solution returned, completing our proof. O

2 Experimental Details

Experiments were conducted using PyTorch 1.8 and CUDA Toolkit 10.2, run on Nvidia 2080 TIs and in-
dividual Nvidia A100s. Parallelization only occurred across runs; the attached code can be run with any
CUDA/PyTorch setup with the appropriate dependencies.

2.1 Markov Blanket Selection

Experimental settings were taken from [ 16], with code adapted from https://github.com/syanga/model-augmented-
mutual-information. 5000 samples were used for generating the data, and 100 trials/perumutations were con-
ducted for the CIT testing framework.

2.2 L-CODEC vs CODEC Speed Results

The full figure can be seen below, at Figure 1. Each pair of columns corresponds to a different attribute in
the CelebA dataset as the focal variable of interest, with the rest as potential conditioning variables.

2.3 MNIST Toy Results

Training for MNIST Logistic Regressor models was run using SGD with a learning rate of 0.1, batch size of
256, and weight decay of 0.01 for 50 epochs. 1000 perturbations were used for distribution approximation.
Privacy parameters were set to ¢ = 0.1, = 0.01. Figures and numbers in the main paper were averaged
over 10 replications, for a random choice of 1000 samples to scrub.

2.4 Retraining Comparisons
MNIST: Affects of [> Regularization and Weight Decay

Repeating the retraining comparison in the main paper with a larger regularization, we see that the effects
of removal are significantly diminished and the model can support a larger number of removals before large
performance drops.
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Figure 1: L-CODEC vs CODEC run time comparison for identifying sufficient subsets for each CelebA
attribute separately (pairs of columns, details in supplement).
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Figure 2: MNIST Retraining results, comparing the effect of weight decay on unlearning via our LFOCI
unlearning scheme and retraining.

CIFAR Retraining Comparisons: A Note on Batch Normalization

An important requirement for our retraining experiment is that our residual training set used for both scrub-
bing validation and retraining is able to take on any size, including 1 and any size for which the modulus
over the batch size equals 1. This causes particular problems when models include batch normalization lay-
ers: general practice in training deep neural networks includes the choice of dropping the last batch, so as to
avoid issues of unbalanced batch sizes. For our setting we cannot drop these batches, because we explicitly
want to measure and compute on networks trained with and without specific samples. While we can “skip”
removals during our experimentation, this can still lead to odd behavior, see Figure 3. The spikes are ex-
actly congruent with points in the removal process corresponding to a final batch size of 1 for retraining. In
general, care must be taken when attempting to unlearn from batchnorm models, and further work may be
necessary to adequately address it, both in theory and practice.
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Figure 3: Retraining Results on CIFAR. Dips occur at removal counts where the modulus equals 1.

2.5 CIFAR-10 Model Comparisons

Models were trained using Torch Hub, with a batch size of 64, learning rate of 0.1 for all models except VGG-
11/bn, for which 0.01 was used. Data augmentation was NOT used, and weight decay was set to 0.01. 1000
perturbations were used for distribution approximation. Privacy parameters were set to e = 0.1, = 0.01.
Figures and numbers in the main paper were averaged over 2 replications, for a random choice of 1000
samples to scrub.

2.6 LEDGAR DistillBERT Details

For the NLP experiments, we used a pretrained model from HuggingFace as a starting point. Specifically, we
used the transformer model “distilbert-base-uncased”, https://huggingface.co/distilbert-base-uncased which
is a distilled version of the BERT base model, smaller and faster than BERT. It was pretrained on the same
corpus in a self-supervised fashion, using the BERT base model as a teacher. DistilBERT [11] was pre-
trained on the raw texts only, without any human labels. The three losses used for the pre-training are that
of distillation loss, masked language modelling and cosine embedding loss. This pre-trained model was then
fine-tuned for the downstream task of provision classification using the LEDGAR dataset introduced in [14].
We used the prototypical dataset which had 13 most common labels based on frequency. The model was fine-
tuned for 4 epochs, updating all of it’s parameters without any freezing based on binary cross entropy loss
with class weighting. The labels were converted to one-hot vectors and hence binary cross entropy loss was
used. Learning rate used was 5e~° and weight decay of 0.01. No weight decay was applied for bias and nor-
malization layer parameters. We used batch size of 256 and restricted the maximum length of tokens to 128
per data point. Further gradients were clipped based on the infinity norm to a value of 1.0. We used AdamW
optimizer with an epsilon value of 1e~®; and the learning rate scheduler used was WarmupLinearSchedule
both from PyTorch_Transformers.

For unlearning experiments on this model, we remove provisions pertaining to a specific class. We re-
moved samples from two classes namely “Governing Laws” and “Terminations” which had the highest and
lowest support respectively. We were able to removed a varying number of samples from these classes based
on the selection of the privacy parameter of e for scrubbing. The results are tabulated in the main paper.

2.7 VGG-Face Identification Scrubbing

For this setting, the trained model was downloaded from https://www.robots.ox.ac.uk/~vgg/data/vgg face/
and converted to PyTorch via https://github.com/prlz77/vgg-face.pytorch. A partial version of the dataset
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was constructed using the list of image URLSs, consisting of 100 images for each identity within the set. The
images were processed as described in the original paper [10].

Fine tuning was done for 4 epochs to estimate the Hessian for the sample downloaded using SGD with a
learning rate of 0.0001 and a weight decay/l regularization of 0.01, with a batch size of 16.

For unlearning, 100 images for a specific identity were randomly ordered and removed with e = 0.0001, o
0.01. 100 perturbations were used to estimate the activation and loss distributions for L-FOCI.

2.8 Person Re-identification

We discuss in more detail the experimental details of unlearning deep neural networks for the person re-
identification task in this section. We consider four different datasets namely, Market1501 [17], MSMT17
[15], PRID [5] and QMUL GRID [8]. We unlearn from different deep neural networks including ResNet50,
a variant of ResNet50 with a fully connected layer (called Resnet50_fc512), Multi-Level Factorisation Net
(MLFN) and MobilNet_V2. In all cases the models were first trained to reasonable accuracy as per bench-
marks before proceeding with unlearning a randomly selected individual’s identity from the corresponding
dataset. To perform experiments pertaining to person re-identification we make use of the popular frame-
work torchreid [18]. We had to make changes to the original code in order to make our procedure function
correctly in this framework. We include this modified source within the code presented in the supplement.
We use Adam as the optimizer, a step scheduler and learning rate of 0.0003 across all person re-identification
datasets and models used. We use softmax loss and weights were initialized using a model pre-trained on
ImageNet in all cases. Images were resized to 256 x 128 before being used as input to any of the models.
The number of training epochs was chosen accordingly to allow the training to have converged. Results from
multiple runs involving different models, datasets and the privacy parameter (¢) are conclusive. With lower
value of ¢, e.g. 0.0005, the number of samples that could be unlearned for a particular class while maintain-
ing model performance was lower than what could be unlearned for a higher value of the privacy parameter
€, e.g. 0.1. For the smaller datasets, i.e. PRID and QMUL GRID, which have approximately 2 samples per
class, the unlearning procedure lead to more drastic changes as expected and it could be observed that our
selection procedure selected many more layers to update than what it did for the larger datasets. Activation
maps from some experiments are presented in Fig 4.

3 Conditional Independence and Parameter Selection via L-CODEC

Our algorithm is directly adapted from [ 1] to our parameter selection setting. Algorithm 1 shows the proce-
dure, described for arbitrary random variables in Section 5 of [1].

While tests for independence exist, CODEC directly estimates explanation of variance with and without
the conditional variable(s) of interest. For readers interested in conditional independence more generally,
and statistical and theoretical foundations, please see [13, 2]. More recent information-based formulations
can be found in [16] and references therein.

4 Alternate Hessian Approximations

Typical approximations are non often non-sparse; a key focus of our proposal is a reasonably informed
sparse estimation in deep unlearning: we cannot allocate both full networks and the space for an inverse
for 50K+ parameters (needs 10+GB alone). For Deep unlearning specifically, our sub selection makes this
possible. Diagonal modification still needs full parameter updates. However, we explored the utilization of



Algorithm 1: Parameter MB Identification via L-CODEC (L-FOCI)

Data: 2/, the full parameter set w indexed by © := {1,...,d}
Result: Sufficient set P C ©
Identify p € © that maximizes T'(2’, w))
Set P = {p}
while T'(2', we\ plwp) > 0 do

Identify p € © \ P that maximizes T'(2", we\ p|weus)

if (2, w\ p,wpup) < 0 then

break
else
| Append P =PUp

end

end

other Hessian inverse approximation schemes. More specifically, we implemented an unlearning scheme
based on Kronecker-Factored Approximate Curvature (K-FAC) [9] which exploits an efficient invertible
approximation of a deep learning model’s Fisher information matrix which can be non-sparse and neither
low rank nor diagonal. In an experimental setup, we perform unlearning based on K-FAC from an multi
layer perceptron model trained on MNIST dataset. We don’t see any observable updates happening to the
model based on validation metrics. Whereas, the exact same model with the exact same set of parameters
can unlearn the same set of data-points using our proposed deep unlearning method based on LCODEC. We
would like to point out that in order to unlearn from deep models using existing approximations schemes like
K-FAC, we might have to re-imagine the update step. This demands further investigation. In other words our
procedure may not be more broadly applicable to non-sparse general Hessian inverse approximations without
an obvious CI structure.

We have included the code to compare K-FAC based unlearning with LCODEC based unlearning in the
file https://github.com/vsingh- group/LCODEC-deep-unlearning/blob/main/scrub/kfac_scrub.py

In our implementation we heavily rely on the KFAC approximations of the Hessian as provided in https:
//github.com/cybertronai/autograd-1ib . More instructions can be found in the README.
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Figure 4: Activation maps from a different models (top two rows correspond to MLFN and bottom two
correspond to MobileNet_V2; both trained on Market_1501) scrubbed for the person on the left (right set is
not scrubbed). For each triplet, from (L to R) are the ogjginal image, the activation map and its image overlay.
Note the effect of scrubbing: activations change significantly for the scrubbed sample (compare column 2 to
3) whereas remain stable for the non-scrubbed sample (compare column 5 to 6).
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