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A. Overview
The supplementary material is organized into the follow-

ing sections:

• Section B: Analysis of both communication and com-
pute efficiency for all explored methods.

• Section C: Second-order analysis of FedAlign.

• Section D: Hyperparameter ablations for FedAlign.

• Section D: Details and visualization for the non-IID
data partitioning scheme.

• Section F: Implementation details for transmitting ma-
trices and FedAlign training.

B. Communication and Compute Efficiency
Communication cost is another critical factor in FL sys-

tems, as participating client devices are often on slow or
congested networks [4]. Therefore, total efficiency in FL
systems includes both the ability to reduce the local com-
putational burden, as well as the communication overhead.
We evaluate all methods with such measures in Table 1. We
maintain the CIFAR-100 setting described in Section 3.2 of
the main paper, except that we do not limit the number of
rounds, but rather allow all methods to reach a common ac-
curacy of 60%. This allows us to analyze the total costs of
each method consistently. FedAlign proves to be the most
efficient in all respects, achieving the target accuracy in less
number of rounds, less communication cost, and less local
computation.

C. Second-order Analysis
In Table 2, we show the second-order analysis re-

sults for FedAlign along with the other methods. The

Table 1. Number of rounds (Rounds), local compute (MFLOPs),
and communication cost (Comm Cost) required by each method
to achieve 60% accuracy on CIFAR-100. Local computation is
computed as the sum total over all nodes and samples for all com-
pleted rounds. Communication costs are calculated by the number
of parameters of the model transferred as 32 bit weights with all
completed rounds.

Method Rounds MFLOPs Comm Cost (Gb)
FedAvg 84 7332 26.23
FedProx 78 6809 24.36
MOON 55 14421 17.18

Mixup 71 6198 22.17
StochDepth 46 3790 14.37

GradAug (n = 2) 41 6999 12.81
GradAug (n = 1) 44 5892 13.74

FedAlign 37 3297 11.56

Liptzshitz-focused distillation loss of FedAlign effectively
reduces the Lipshitz constant λmax considerably as in-
tended (FedAlign results in the lowest λmax across all
methods), and therefore helps provide stronger general-
ization and performance. However, one limitation to
FedAlign is that it does not directly translate to a strong re-
duction in HN . Therefore, a promising direction for future
work could extend FedAlign to also consider this aspect.

D. Hyperparameter Ablations of FedAlign
The default hyperparameter setting used throughout the

paper is ωS = 0.25 and µ = 0.45. The performance of
FedAlign with various hyperparameters on the CIFAR-100
basic setting (described in Section 3.2 of the main paper) is
shown in Table 3. We vary µ and ωS independently, mean-
ing ωS = 0.25 for the µ ablations, and µ = 0.45 when
varying ωS . Table 3 shows that FedAlign is more sensitive
to ωs than µ; nonetheless, we found ω = 0.25 to be a versa-
tile choice in practice. Furthermore, hyperparameters only
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(a) CIFAR-100, α = 0.5
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(b) CIFAR-100, α = 0.1
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(c) CIFAR-10, α = 0.5
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(d) ImageNet-200, α = 0.5

Figure 1. Data distribution visualization for Dir(α) and C = 16 across multiple datasets. Each column shows the number of samples per
class allocated to a client.

need to be decided once, as they transfer well across a va-
riety of other datasets and FL settings as shown in Section
4.1 of the main paper.

Table 2. Results for accuracy (%) on CIFAR-100 and second-order
metrics indicating the smoothness of the loss space (λmax, HT )
and cross-client consistency (HN , HD) for each method.

Method Acc. ↑ λmax↓ HT ↓ HN↓ HD↑
FedAvg 52.9 297 6240 11360 0.98
FedProx 53.0 270 6132 6522 0.98
MOON 55.3 252 5520 5712 0.97

Mixup 54.0 216 5468 15434 0.99
StochDepth 55.5 215 3970 8267 0.97

GradAug (n = 2) 57.1 167 2597 2924 0.96
GradAug (n = 1) 56.8 179 3620 2607 0.97

FedAlign 56.7 143 4409 9655 0.99

Table 3. FedAlign hyperparameter ablations on with CIFAR-100

Method µ = 0.35 µ = 0.45 µ = 0.55 ωS = 0.1 ωS = 0.25 ωS = 0.4

FedAlign 56.0 56.7 56.1 54.9 56.7 55.2

E. Data Partitioning

As is common in the literature [1–3], we partition
the employed datasets into K unbalanced subsets using a
Dirichlet distribution Dir(α). The distribution for all three
datasets at α = 0.5 is visualized in Fig. 1 (a), (c), and (d).
Additionally, (b) shows the distribution for CIFAR-100 with
α = 0.1 as studied in Section 3.5 of the main paper. Over-
all, we see that the number of samples for each class varies
considerably across clients, and often times a client will not
have any samples from multiple classes. This enhances the
FL setting by making it more realistic and challenging. For
implementation, we utilize the same data partitioning script
as that in [2].



F. Additional Implementation Details
When calculating XF and XS , the input and output fea-

tures involved will typically be of different spatial sizes in
practice. Therefore, [5] utilizes an adaptive average pool
operation in PyTorch to reduce the spatial size of the larger
feature map to that of the smaller one. We likewise employ
this operation.

Prior to performing backpropagation, we apply a rel-
ative scale to LLip along with the µ scaling param-
eter. In PyTorch-style pseudocode: loss lip = µ∗

(loss ce.item()/loss lip.item())∗ loss lip. This is to en-
sure that LLip is on relatively the same scale with LCE . A
gradient clip is also applied.
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