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Figure 1. Qualitative results. Images allocated with the least (Left) and the most (Right) computational resources by AdaViT are shown.

A. Qualitative Results

We further provide more qualitative results in addi-
tion to those in the main text. Images that are allocated
the least/most computational resources by our method are
shown in Figure 1, demonstrating that our method learns
to use less computation on easy object-centric images and
more computation on hard complex images with cluttered
background. Figure 3 shows more visualization of the
learned usage policies for patch selection, demonstrating
the pattern that our method allocates less and less compu-
tation gradually throughout the backbone network, which
indicates that more redundancy in computation resides in
the later stages of the vision transformer backbone.

B. Compatibility to Other Backbones

Our method is by design model-agnostic and thus can be
applied to different vision transformer backbones. To ver-
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Figure 2. Compatibility to DeiT [1]. We use DeiT-small as the
backbone of AdaViT and show: (a) Efficiency/Accuracy trade-
offs of standard DeiT variants and our AdaViT. (b) Comparison
between AdaViT and its Random+ baseline with similar computa-
tional cost.

ify this, we use DeiT-small [1] as the backbone of AdaViT
and show the results in Figure 2. AdaViT achieves better
efficiency/accuracy tradeoff when compared with standard
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Figure 3. Visualization of selected patches at different blocks with T2T-ViT [2] (Above) or DeiT [1] (Below) as the vision transformer
backbone respectively. Green color denotes the patch is kept.

variants of DeiT, and consistently outperforms its Random+
baseline by large margins, as demonstrated in Figure 2(a)
and 2(b) respectively.

We further show the visualization of patch selection us-
age policies with DeiT-small as the backbone as well in
Figure 3. A similar trend of keeping more computation
at earlier layers and gradually allocating less computation
throughout the network is also observed.
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