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A. Details about Spike Representation
A.1. Derivation for Eq. (14)

In this subsection, we consider the LIF model defined by
Eqs. (3a) to (3c) and (5), and derive Eq. (14) from Eq. (13)
in the main content under mild assumptions.

From the main content, we have derived that

â[N ] ≈ Î[N ]

τ
− V [N ]

∆t
∑N
n=1 λ

N−n
, (S1)

as shown in Eq. (13). Since the LIF neuron is supposed to
fire no or very few spikes when Î[N ]

τ < 0 and fire almost

always when Î[N ]
τ > Vth

∆t , we can separate the accumulated
membrane potential V [N ] into two parts: one part V −[N ]
represents the “exceeded” membrane potential that does not
contribute to spike firing, and the other part V +[N ] repre-
sents the “remaining” membrane potential. In detail, the
“exceeded” membrane potential V −[N ] can be calculated
as

V −[N ] =


(∆t

∑N
n=1 λ

N−n) Î[N ]
τ
, Î[N ]

τ
< 0,

(∆t
∑N
n=1 λ

N−n)( Î[N ]
τ
− Vth

∆t
), Î[N ]

τ
> Vth

∆t
,

0, otherwise.
(S2)

And the “remaining” membrane potential can be calcu-
lated as V +[N ] = V [N ] − V −[N ]. With the decom-
position of membrane potential V [N ] and the fact that
∆t
∑N
n=1 λ

N−n = τ when N → ∞ and ∆t → 0, we
can further approximate â[N ] from Eq. (S1) as

lim
N→∞

â[N ] ≈ lim
N→∞

clamp

(
Î[N ]

τ
− V +[N ]

τ
, 0,

Vth
∆t

)
, (S3)

if the limit of right hand side exists.

*Corresponding author.

Now we want to find the condition to ignore the term
V +[N ]
τ in Eq. (S3). In the case V −[N ] 6= 0, the mag-

nitude of membrane potential |V (n)| would gradually in-
crease with time. After introducing V −, the “remaining”
membrane potential V +[N ] typically does not diverge over
time. In fact, V +[N ] is typically bounded in [0, Vth] when
N →∞, except in the extreme case when the input current
at different time steps distributes extremely unevenly. So
we can just assume that V +[N ] ∈ [0, Vth]. Furthermore, if
we set a significantly smaller threshold Vth compared to the
magnitude of Î[N ], the term V +[N ]

τ can be ignored. Then
from Eq. (S3), we have

lim
N→∞

â[N ] ≈ clamp

(
lim
N→∞

Î[N ]

τ
, 0,

Vth
∆t

)
. (S4)

That is ,we can approximate â[N ] by clamp
(
Î[N ]
τ , 0, Vth

∆t

)
,

with an approximation error bounded by Vth

τ when N →
∞.

In summary, we derive Eq. (14) from Eq. (13) in the main
content under following mild conditions:

1. The LIF neuron fires no or finite spikes as N → ∞
when Î[N ]

τ < 0. And the LIF neuron does not fire
only at a finite number of time steps as N →∞ when
Î[N ]
τ > Vth

∆t .

2. V +[N ] ∈ [0, Vth].

A.2. Derivation for Eq. (15)

In this subsection, we consider the IF model defined by
Eqs. (3a) to (3c) and (4) and derive Eq. (15) in the main
content under mild assumptions.
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Combining Eqs. (4) and (3c), and taking the summation
over n = 1 to N , we can get

V [N ]− V [0] =

N∑
n=1

I[n]− Vth
N∑
n=1

s[n]. (S5)

Define the scaled firing rate until the time stepN as a[N ] =
1
N

∑N
n=1 Vths[n], and the average input current as Ī[N ] =

1
N

∑N
n=1 I[n]. Dividing Eq. (S5) by N , we have

a[N ] = Ī[N ]− V [N ]

N
. (S6)

Using similar arguments appeared in Section A.1, we can
get

lim
N→∞

a[N ] = lim
N→∞

clamp

(
Ī[N ]− V +[N ]

N
, 0, Vth

)
, (S7)

if the limit of right hand side exists. Here V +[N ] = V [N ]−
V −[N ] and

V −[N ] = min

(
max

(
N∑
n=1

I[n]−NVth, 0

)
,

N∑
n=1

I[n]

)
.

(S8)
Similar to the LIF model, the “remaining” membrane poten-
tial V +[N ] for the IF model is typically bounded in [0, Vth]
when N → ∞, except in the extreme case. For example,
consider Ī[N ] > 0 and the input current is non-zero only
at the last N2 time steps, then V +[N ] will be inconsistently
large and will be unbounded when N →∞. However, this
extreme case will not happen in SNN computation for nor-
mal input data. Therefore, we assume V +[N ] ∈ [0, Vth],
and can get

lim
N→∞

a[N ] = clamp
(

lim
N→∞

Ī[N ], 0, Vth

)
. (S9)

if the limit of Ī[N ] exists.
In summary, we derive Eq. (15) in the main content un-

der following mild conditions:

1. The IF neuron fires no or finite spikes asN →∞when
Ī[N ] < 0. And the IF neuron does not fire only at a
finite number of time steps as N → ∞ when Ī[N ] >
Vth.

2. V +[N ] ∈ [0, Vth].

B. Pseudocode of the Proposed DSR Method

We present the pseudocode of one iteration of SNN train-
ing with the DSR method in Algorithm 1 for better illustra-
tion.

Algorithm 1 One iteration of SNN training with the pro-
posed DSR method.

Input: Time steps N ; Network depth L; Network param-
eters WL, · · · ,WL, V 1

th, · · · , V Lth; Input data x; Label
y; Other hyperparameters.

Output: Trained network parameters WL, · · · ,WL,
V 1
th, · · · , V Lth.

Forward:
1: for n = 1, 2, · · · , N do
2: for i = 1, 2, · · · , L do
3: if the IF model is used then
4: Calculate si[n] by Eq. (7);
5: else if the LIF model is used then
6: Calculate si[n] by Eq. (8);
7: end if
8: if n = N then
9: if the IF model is used then

10: oi = 1
N

∑N
n=1 Vths[n];

11: else if the LIF model is used then
12: oi =

Vth

∑N
n=1 λ

N−ns[n]∑N
n=1 λ

N−n∆t
;

13: end if
14: end if
15: end for
16: end for
17: Calculate the loss ` based on oL and y.
Backward:
18: Calculate ∂`

∂oL ;
19: for i = L,L− 1, · · · , 1 do
20: Calculates ∂oi

∂oi−1 , ∂oi

∂Wi , and ∂oi

∂V i
th

by Eq. (17);

21: ∂`
∂Wi = ∂`

∂oi
∂oi

∂Wi ;
22: ∂`

∂V i
th

= ∂`
∂oi

∂oi

∂V i
th

;
23: if i 6= 1 then
24: ∂`

∂oi−1 = ∂`
∂oi

∂oi

∂oi−1 ;
25: end if
26: Update Wi, V ith based on ∂`

∂Wi , ∂`
∂V i

th

.
27: end for

C. Implementation Details

C.1. Dataset Description and Preprocessing

CIFAR-10 and CIFAR-100 The CIFAR-10 dataset [7]
contains 60,000 32×32 color images in 10 different classes,
which can be separated into 50,000 training samples and
10,000 testing samples. We apply data normalization to en-
sure that input images have zero mean and unit variance.
We apply random cropping and horizontal flipping for data
augmentation. The CIFAR-100 dataset [7] is similar to
CIFAR-10 except that there are 100 classes of objects. We
use the same data preprocessing as CIFAR-10. These two
datasets are licensed under MIT.



ImageNet The ImageNet-1K dataset [1] spans 1000 ob-
ject classes and contains 1,281,167 training images, 50,000
validation images and 100,000 test images. This dataset is
licensed under Custom (non-commercial). We apply data
normalization to ensure zero mean and unit variance for in-
put images. Moreover, we apply random resized cropping
and horizontal flipping for data augmentation.

DVS-CIFAR10 The DVS-CIFAR10 dataset [8] is a neu-
romophic dataset converted from CIFAR-10 using an event-
based sensor. It contains 10,000 event-based images with
resolution 128×128 pixels. The images are in 10 classes,
with 1000 examples in each class. The dataset is licensed
under CC BY 4.0. Since each spike train contains more
than one million events, we split the events into 20 slices
and integrate the events in each slice into one frame. More
details about the transformation could be found in [3]. To
conduct training and testing, we separate the whole data into
9000 training images and 1000 test images. Both the event-
to-frame integrating and data separation are handled with
the SpikingJelly [2] framework. We also reduce the spa-
tial resolution from 128×128 to 48×48 and apply random
cropping for data augmentation.

C.2. Batch Normalization

Batch Normalization (BN) [5] is a widely used technique
in the deep learning community to stabilize signal propaga-
tion and accelerate training. In this paper, BN is adopted in
the network architectures. However, since the input data for
SNNs have an additional time dimension when compared
to input image data for ANNs, we need to make the BN
components suitable for SNNs.

In this paper, we combine the time dimension and
the batch dimension into one and then conduct BN.
In detail, consider a batch of temporal data x ∈
RB×N with batch size B and temporal dimension N
such that x = (x(1), · · · ,x(B)), and x(i) ∈ RN
for i = 1, 2, · · · , N . Then define µ and σ2

to be the mean and variance of the reshaped data
(x(1)[1], · · · , x(1)[N ], · · · , x(B)[1], · · · , x(B)[N ]). With
the defined µ and σ2, BN transforms the original data x(i)

to x̂(i) as

x̂(i) = γ
x(i) − µ√
σ2 + ε

+ β, (S10)

where γ and β are learnable parameters, and ε is a small
positive number to guarantee valid division.

C.3. Network Architectures

We use the pre-activation ResNet-18 [4] network archi-
tecture to conduct experiments on CIFAR-10, CIFAR-100,
and ImageNet. To make the network architecture imple-
mentable on neuromorphic chips, we add spiking neurons

after pooling operations and the last fully connected classi-
fier. Furthermore, we replace all max pooling with average
pooling. To stabilize the (weighted) firing rates of the out-
put layer, we also introduce an additional BN operation be-
tween the last fully connected classifier and the last spiking
neuron layer. The network contains four groups of basic
block [4] structures, with channel sizes 64, 128, 256, and
512, respectively.

To test the effectiveness of the proposed DSR method
with deeper networks structures, we conduct experiments
with the pre-activation ResNet with 20, 32, 44, 56, 110 lay-
ers, whose architectures are shown in Tab. S1. We also add
additional spiking neuron layers and BN layers like what
we do for the PreAct-ResNet-18 structure.

We use the VGG-11 [11] network architecture to conduct
experiments on DVS-CIFAR10. To enhance generalization
capacity of the network, we further add dropout [12] layers
after the spiking neurons, and we set the probability of ze-
roing elements to be 0.1. We only keep one fully connected
layer to reduce the number of neurons.

C.4. Training Hyperparameters

First, we consider hyperparameters about the IF model.
We set the initial threshold for each layer V ith = 6 and re-
strict it to be no less than 0.01 during training. We set α in
Eq. (20) to be 0.5.

Then we consider hyperparameters about the LIF model.
We fix the time constant τ i for the ith layer to be 1 for each
i. The setting for initial V ith, lower bound for V ith, ∆t, and α
change with the number of time steps, as shown in Tab. S2.

Table S2. Hyperparameters for the LIF model given different num-
ber of time steps. “LB for V ith” means lower bound for V ith.

Time Steps initial V ith LB for V ith ∆t α
20 0.3 0.0005 0.05 0.3
15 0.3 0.0005 0.05 0.4
10 0.3 0.0005 0.05 0.4
5 0.6 0.001 0.1 0.5

Next, we consider hyperparameters about the optimiza-
tion. We use cosine annealing [9] as the learning rate sched-
ule for all datasets. Other hyperparameters can be found in
Tab. S3. Also note that we change the initial learning rate
from 0.1 to 0.05 when using 5 time steps.

Table S3. Hyperparameters about Optimization for training
CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10.

Dataset Optimizer Epoch lr Batchsize
CIFAR-10 SGD [10] 200 0.1 128

CIFAR-100 SGD [10] 200 0.1 128
ImageNet Adam [6] 90 0.001 144

DVS-CIFAR10 SGD [10] 300 0.05 128



Table S1. Network architectures for PreAct-ResNet-20, PreAct-ResNet-32, PreAct-ResNet-44, PreAct-ResNet-56, PreAct-ResNet-110.

20-layers 32-layers 44-layers 56-layers 110-layers
conv (3×3,16)(

3× 3, 16
3× 3, 16

)
× 3

(
3× 3, 16
3× 3, 16

)
× 5

(
3× 3, 16
3× 3, 16

)
× 7

(
3× 3, 16
3× 3, 16

)
× 9

(
3× 3, 16
3× 3, 16

)
× 18(

3× 3, 32
3× 3, 32

)
× 3

(
3× 3, 32
3× 3, 32

)
× 5

(
3× 3, 32
3× 3, 32

)
× 7

(
3× 3, 32
3× 3, 32

)
× 9

(
3× 3, 32
3× 3, 32

)
× 18(

3× 3, 64
3× 3, 64

)
× 3

(
3× 3, 64
3× 3, 64

)
× 5

(
3× 3, 64
3× 3, 64

)
× 7

(
3× 3, 64
3× 3, 64

)
× 9

(
3× 3, 64
3× 3, 64

)
× 18

average pool, 10-d fc

D. Firing Sparsity
To achieve low energy consumption on neuromorphic

hardware, the number of spikes generated by an SNN
should be small. Then the firing rate is an important quan-
tity to measure the energy efficiency of SNNs. We calculate
the average firing rates of the trained SNNs on CIFAR-10,
as shown in Fig. S1. The results show that the firing rates of
all layers are below 20%, and many layers have firing rates
of no more than 5%. Regardless of the layer of neurons, the
total firing rates are between 7.5% and 9.5% for different
number of time steps and both neuron models. Since the
firing rate does not increase as the number of time steps de-
creases, the proposed method can achieve satisfactory per-
formance with both low latency and high firing sparsity.

E. Weight Quantization
In our experiments, the network weights are 32-bit.

However, we can also adopt low-bit weights when im-
plementing our method on neuromorphic hardware, by
combining existing quantization algorithms. The weights
in neuromorphic hardware are generally 8-bit. So we
simply quantize the weights of our trained SNNs to 8
bits and even 4 bits using the straight-through estimation
method, and the results on CIFAR-10 are shown in Tab. S4.

Table S4. Performances on CIFAR-10 with network weights of
different precisions. The PreAct-ResNet-18 architecture with 20
time steps is used.

Neural Model 32 bits 8 bits 4 bits
IF 95.38% 95.45% 95.31%

LIF 95.63% 95.65% 95.39%

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. IEEE, 2009. 3

1 3 5 7 9 11 13 15 17 19
Network Depth

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fi
rin

g 
R

at
e 

(%
)

Time Setps: 5
Time Setps: 10
Time Setps: 15
Time Setps: 20

(a) Firing rates for the IF model.

1 3 5 7 9 11 13 15 17 19
Network Depth

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
rin

g 
R

at
e 

(%
)

Time Setps: 5
Time Setps: 10
Time Setps: 15
Time Setps: 20

(b) Firing rates for the LIF model.
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