
Supplementary Material: Audio-visual Generalised Zero-shot Learning
with Cross-modal Attention and Language

In this supplementary material, we include additional qual-
itative results (Appendix A) and quantitative results (Ap-
pendix B) for our proposed audio-visual (G)ZSL frame-
work.

A. Additional Qualitative Results

We provide additional qualitative results for our pro-
posed AVCA model for the tasks of audio-visual GZSL and
ZSL. We present t-SNE visualisations for the learnt audio-
visual embeddings on the VGGSound-GZSL and UCF-
GZSL datasets in Fig. 1 and Fig. 2.

In Fig. 1a, we can observe that the input audio features
do not demonstrate a clear separation between the visu-
alised classes for the VGGSound-GZSL dataset. The vi-
sual features exhibit a better clustering as can been seen in
Fig. 1b. However, the visual features also include classes,
such as elephant trumpeting and wood thrush calling, that
are not clustered cleanly. Our AVCA model outputs multi-
modal features that improve the clustering for both, seen
and unseen classes (Fig. 1c). The learnt features for the two

(a) Input audio embeddings (b) Input visual embeddings

(c) Learnt audio-visual embeddings

Figure 1. t-SNE visualisation for three seen (striking bowling,
playing squash, playing timpani) and two unseen (elephant trum-
peting, wood thrush calling) test classes from the VGGSound-
GZSL dataset, showing (a) audio and (b) visual features extracted
with SeLaVi [4], and (c) learnt audio-visual embeddings of our
model. Textual class label embeddings are visualised with a cross.
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Figure 2. t-SNE visualisation for three seen (baby crawling, bas-
ketball dunk, bowling) and two unseen (band marching, playing
flute) test classes from the UCF-GZSL dataset, showing (a) audio
and (b) visual features extracted with SeLaVi [4], and (c) learnt
audio-visual embeddings of our model. Textual class label em-
beddings are visualised with a cross.

unseen classes elephant trumpeting and wood thrush call-
ing are clustered and well-separated as opposed to the input
features. This is impressive, since both classes were not in-
cluded in the training set.

Similarly, for the UCF-GZSL dataset, we can observe
in Fig. 2a that the input audio features are not grouped ac-
cording to classes. In contrast, the visual input embeddings
mostly exhibit a clear clustering of different classes. How-
ever, the classes baby crawling and playing flute are not
well-separated as can be seen in Fig. 2b. This improves
through learning, since the learnt audio-visual features in
Fig. 2c show a clear divide between those two classes.
In addition to that, the output embeddings for the unseen
classes band marching and playing flute are overwhelm-
ingly clustered well, too.

To summarise, our model learns to cluster both seen and
unseen classes for different datasets by transferring infor-
mation from the training data to unseen classes at test time.



Method type Model VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

ZSL

ALE [2] 26.13 1.72 3.23 4.97 45.42 29.09 35.47 32.30 0.89 6.16 1.55 6.16
SJE [3] 16.94 2.72 4.69 3.22 19.39 32.47 24.28 32.47 37.92 1.22 2.35 4.35
DEVISE [5] 29.96 1.94 3.64 4.72 29.58 34.80 31.98 35.48 0.17 5.84 0.33 5.84
APN [11] 6.46 6.13 6.29 6.50 13.54 28.44 18.35 29.69 3.79 3.39 3.58 3.97

Audio-visual CJME [9] 10.86 2.22 3.68 3.72 33.89 24.82 28.65 29.01 10.75 5.55 7.32 6.29
ZSL AVGZSLNet [8] 15.02 3.19 5.26 4.81 74.79 24.15 36.51 31.51 13.70 5.96 8.30 6.39

AVCA 12.63 6.19 8.31 6.91 63.15 30.72 41.34 37.72 16.77 7.04 9.92 7.58

Table 1. Evaluating AVCA and state-of-the-art (G)ZSL methods for audio-visual GZSL and ZSL on the VGGSound, UCF, and ActivityNet
(G)ZSLcls benchmarks using features extracted from audio/video classification networks. We report the mean class accuracy on the seen
(S) and unseen (U) test classes, and their harmonic mean (HM) for GZSL performance. The ZSL performance is evaluated on the test
subset of samples from unseen classes.

B. Additional Quantitative Results
In this section, we provide additional quantitative results

obtained with our AVCA. We present results for training
and evaluating our AVCA model with a different set of in-
put features in Appendix B.1. In particular, we use fea-
tures extracted from networks that were pretrained for audio
and video classification. We perform an additional ablation
study that gradually transforms AVCA into AVGZSLNet [8]
in Appendix B.2. Complete results that include the U and
S performance for Table 3 in the main paper are provided
in Appendix B.3. Finally, we give details about the number
of parameters and GFLOPS required for training our AVCA
model in Appendix B.4

B.1. Using features extracted audio/video classifica-
tion networks

We additionally trained and tested our model and the
baseline models using features extracted from audio and
video classification networks (instead of the SeLaVi [4] fea-
tures used in the main paper). In particular, the visual fea-
tures were extracted with C3D [10], pretrained for video
classification on Sports1M [7]. The audio features were
extracted with VGGish [6], pretrained for audio classifica-
tion on Youtube-8M [1]. We averaged the extracted features
across time, resulting in a 4096-dimensional visual feature
and a 128-dimensional audio feature for each video.

However, to use the audio features extracted from a
network that was pretrained on Youtube-8M, we removed
the test unseen classes from the VGGSound-GZSL, UCF-
GZSL, and ActivityNet-GZSL datasets that had an over-
lap with Youtube-8M. This resulted in slightly different
dataset splits (VGGSound-GZSLcls, UCF-GZSLcls, and
ActivityNet-GZSLcls) detailed in Table 2.

We provide results for training and evaluating our AVCA
and the baselines using audio and video classification fea-

Dataset # classes # videos
all tr v(U) ts(U) ts(U)

VGGSound-GZSLcls 271 138 69 64 3200
UCF-GZSLcls 48 30 12 6 845
ActivityNet-GZSLcls 198 99 51 48 4052

Table 2. Statistics for our VGGSound, UCF, and ActivityNet
(G)ZSLcls datasets, showing the number (#) of classes in our
splits (tr: train, v: validation, ts: test; S: seen, U: unseen). cls

indicates the dataset splits that allow to use VGGish features pre-
trained on YouTube-8M. The full details about the dataset splits
can be found at https://github.com/ExplainableML/
AVCA-GZSL.

tures in Table 1. AVCA outperforms all the baselines
on all three datasets. On VGGSound-GZSLcls, ACVA
obtains a HM of 8.31% and ZSL of 6.91% compared
to a HM of 6.29% for APN and a ZSL performance of
6.50% for APN. On UCF-GZSLcls, AVCA obtains a HM
of 41.34% and a ZSL of 37.72% compared to a HM of
36.51% for AVGZSLNet and a ZSL performance of 35.48%
for DEVISE. On ActivityNet-GZSLcls , AVCA outperforms
AVGZSLNet with a HM of 9.92% compared to 8.30% and a
ZSL of 7.58% compared to 6.39% for AVGZSLNet. These
results show that AVCA outperforms the other competi-
tors also when using audio and video classification features,
proving again that our cross-attention mechanism and train-
ing objective provide a boost in performance.

B.2. Ablating AVCA in relation to AVGZSLNet

We additionally perform an ablation study that grad-
ually transforms the AVCA model into AVGZSLNet [8]
in Table 3. We show how our model components in-
fluence the (G)ZSL performance, resulting in our AVCA



Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
HM ZSL HM ZLS HM ZSL

AVGZSLNet [8] 5.83 5.28 18.05 13.65 6.44 5.40
W/o x-att 6.02 4.81 26.82 18.37 6.50 5.64
W x-att with lc loss 4.88 4.55 19.38 12.95 11.58 8.40
AVCA 6.31 6.00 27.15 20.01 12.13 9.13

Table 3. Ablation that gradually transforms our AVCA model into
AVGZSLNet [8]. W/o x-att optimises each branch in isolation and
their output predictions are averaged. x-att denotes cross-attention.
lc loss is the loss function used to train AVGZSLNet.

Model VGGSound-GZSL UCF-GZSL ActivityNet-GZSL
S U HM S U HM S U HM

Visual branch 7.02 3.68 4.83 50.18 13.21 20.92 11.80 5.53 7.53
Audio branch 7.74 2.55 3.84 12.99 10.78 11.78 4.56 3.87 4.19
AVCA 14.90 4.00 6.31 51.53 18.43 27.15 24.86 8.02 12.13

Table 4. Influence of training AVCA with different modalities
for GZSL on the VGGSound-GZSL, UCF-GZSL and ActivityNet-
GZSL datasets measuring the GZSL performance on seen (S) and
unseen (U) test classes and their harmonic mean (HM). Using both
modalities yields the strongest GZSL performances.

model that outperforms AVGZSLNet on all three datasets.
For this ablation, we use the SeLaVi [4] features and the
same setup as in the main paper. W/o x-att corresponds
to AVGZSLNet trained with our loss function (without our
cross-attention). It can be observed that W/o x-att pro-
vides improvements on UCF-GZSL, with a HM of 26.82%
compared to 18.05% and a ZSL performance of 18.37%
compared to 13.65%. W x-att with lc loss corresponds to
AVGZSLNet with cross-attention and with the loss func-
tion proposed for AVGZSLNet. In this case, it can be
observed that the cross-attention improves the results over
AVGZSLNet with a HM of 11.58% compared to 6.44%
and ZSL performance of 8.40% compared to 5.40% on
ActivityNet-GZSL. These improvements can also be ob-
served on the other datasets, showing that our novel loss and
our cross-attention mechanism improve the performance
over AVGZSLNet.

B.3. Extended results for training AVCA with dif-
ferent modalities

In this section, we extend the ablation study that uses
different modalities for training (Table 3 in the main paper)
by adding the performance on the seen (S) and unseen (U)
test classes for all the datasets in Table 4.

On all three datasets it can be observed that there is an
increase in both seen and unseen performance when using
AVCA compared to using the Visual branch or the Audio
branch. On VGGSound-GZSL, we can observe that the
S performance for AVCA is 14.90% compared to 7.74%
for the Visual branch. The U performance on VGGSound-
GZSL is also stronger for AVCA than for the Visual branch,
with a score of 4.00% compared to 3.68%. On the UCF-

GZSL dataset, the S performance increases only slightly,
from 50.18% for the Visual branch to 51.53% for AVCA.
However, there is a significant increase in the U perfor-
mance, from 13.21% for the Visual branch to 18.43% for
AVCA. Finally, on ActivityNet-GZSL, AVCA yields a S
score of 24.86% compared to 11.80% for the Visual branch.
The U performance increases from 5.53% for the Visual
branch to 8.02% for AVCA. These results show that the
S/U performance increases significantly when using AVCA
compared to the Visual branch or the Audio branch, leading
to better HM/ZSL performances.

B.4. Number of parameters in AVCA.

AVCA contains 1.69M parameters in total, which
is comparable to the 1.32M parameters used in
AVGZSLNet [8]. ALE/SJE/DEVISE are significantly
smaller with only 307.2k parameters. AVCA has a compu-
tational complexity of 2.36 GFLOPS, while AVGZSLNet
has a computational complexity of 1.38 GFLOPS. Again,
the fewest GFLOPS are required for ALE/SJE/DEVISE
which have a computational complexity of 0.32 GFLOPS.
These statistics show that AVCA is comparable to
AVGZSLNet while providing significantly better results on
all three datasets.
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