
Supplementary Material

A. Rigid Body Transform Notation

Throughout the paper, we have regularly included rigid
body transforms in many equations. Here, we briefly ex-
plain the notation. A 6DoF rigid body transform B

AT 2
SE(3) will transform a point defined in the reference frame
{A} into the reference frame {B}. We write this in two
possible ways. For the first, and most common, we sep-
arate B

AT into its rotational and positional components,
B
AR 2 SO(3) and BpA 2 R3 respectively. In this form
we write Bpk = B

AR
Apk +BpA to transform the 3D point

Apk from the {A} frame into the {B} frame.
In the other form, which shows up in Eq. 4, we leave the

transform in its full 4⇥4 SE(3) form, and use the homoge-
neous form of translation vectors Ap̄k = [Ap>

k 1]>. In this
way, we write Bp̄k = B

AT
Ap̄k. This form specifically al-

lows us to chain together multiple transformations with sim-
plified notation, for example: Bp̄k = B

A2
T A2

A1
T A1

A T Ap̄k.

B. Choice of Symmetry Without Prior

As mentioned in Section 3.1, as opposed to the mirror-
ing technique and additional symmetry classifier proposed
by [28], we need to teach the network to predict the initial
keypoints of symmetric objects, before the prior is avail-
able. We opt to utilize the set of symmetry transforms to
solve this issue in a more concise manner with a simple
intuition: when the prior detection is not available for a
symmetric object, we can simply instruct the network to
choose the orientation which brings the object pose closest
to a canonical pose where the front of the object faces the
camera, and the top of the object faces the top of the image.
This intuition is learned by the network during training by
choosing the symmetry for keypoint labels that brings the
3D keypoints closest (in orientation) to those transformed
into the canonical view {Oc} in the camera frame:

O
ST = argmin

O

Sm
T2S

1

K

KX

k=1

��C p̃k � C p̃c
k

��
2

(6)

Cpk = C
OR

�
O
Sm

ROpk + OpSm

�
Cpc

k = C
Oc

ROpk

where p̃k = pk � 1
K

PK
k=1 pk denotes the kth point of a

mean-subtracted point cloud. We provide some visual ex-
amples of the effect of Eq. 6, which can be seen in Fig. 7.
Remember that Eq. 6 is used to pick the symmetry trans-
form to apply to the ground truth keypoints during training
when the simulated prior detection is not given to the net-
work – otherwise a random symmetry transform is applied
to the prior and ground truth keypoints together so that the
network can learn to follow the prior for the symmetry. The
main effect of Eq. 6 is that it will choose the symmetry to
apply to the ground truth keypoints that best matches the

Figure 7. Examples of how we pick the symmetry to use for the
keypoints during training when a prior detection is not given to
the network. Top: the two possible symmetries for the clamp
are shown on the left, and the keypoints in the canonical view are
shown on the right. The first symmetry is chosen since the points
are closer to the points in the canonical view. Bottom: the bowl
has a continuous axis of symmetry about its vertical axis which
are discretized into 64 symmetry transforms. For brevity we only
show two – a random symmetry that is not chosen for the label
(left) and one that is chosen (center) since it matches the canonical
view (right) the best in terms of orientation. Best viewed in color.

canonical view in terms of orientation, which essentially
tells the network to always pick the symmetry that brings
the front of the object closest to the camera and the top of
the object closest to the negative y-axis of the camera frame
(i.e., the top of the images) if no prior is given.

Of course there is still the issue of detecting keypoints
near the inflection point of a symmetry [28]. While we
could utilize the mirroring technique of [28] to avoid this
issue, we only need to detect keypoints once without the
prior detection in practice (i.e., the first detection), and the
mirroring technique of [28] requires an additional classifier
during test time – which complicates the pipeline and adds
additional computation. If the object is at an inflection point
for the symmetry, and it is difficult to decide which symme-
try to use, in our full SLAM system we can typically just
reject bad measurements until the camera moves to a bet-
ter viewpoint on the object in order for the network to more
confidently choose the initial symmetry based on its train-
ing with Eq. 6.

C. Front-End Tracking Details

Besides the first image, whose camera frame becomes
the global reference frame {G}, we need to estimate the
camera pose C

GT with the set of object PnP poses and the
current estimates of the objects in the global frame. For
each asymmetric object that is both detected in the current
frame with a successful PnP pose C

OTpnp and has an esti-
mated global pose G

OT, we can create a hypothesis about
the current camera’s pose as C

GThyp = C
OTpnp

G
OT

�1 and
then project the 3D keypoints from all objects that have both



Figure 8. Our keypoint labels for the YCB-Video dataset. We labeled identifiable features based on the shape class of the objects (box-like,
cylinder-like, and hand tool) which are common within different instances of the same shape class (such as box corners, cylinder top/bottom
center, etc), and then instance-specific keypoints of other identifiable features such as brand names, bar codes, etc.

Figure 9. Our keypoint labels for the T-LESS dataset. Here, only shape class-specific keypoints were used due to the lack of texture on
each object.

a global 3D estimate and detection in the current image into
the current image plane with this camera pose, and count in-
liers with a �2 test using the detected keypoints and uncer-
tainty. We take the camera pose hypothesis with the most
inliers as the final C

GT, and reject any hypothesis that has
too few. After this, any objects that have valid PnP poses
but are not yet initialized in the scene are given an initial
pose G

OT = C
GT

�1C
OTpnp.

Since each object is initialized with a PnP pose, it is pos-
sible that the initialization can be very poor from a PnP fail-
ure, and, if the pose is bad enough (e.g., off by a large orien-
tation error), optimization can not fix it due to only reach-
ing local minima. To address this issue, we check if the
PnP pose from the current image yields more inliers over
the last few views than the current estimated pose, and, if
this is true, we re-initialize the object with the new pose.
After this, we perform a quick local refinement of the cam-

era pose by fixing the object poses and optimizing just the
current camera to better register it into the scene.

D. Keypoint Labeling

Choice of keypoints. The choice of keypoints for the net-
work to learn is important, but there is no general consensus
about which choice is best. Some have proposed to detect
the corners of the 3D bounding boxes [28], while others
chose keypoints that lie on the object [25,26] – which seems
to be the more accurate approach [26]. Inspired by [34],
we try to pick keypoints that carry some semantic mean-
ing. Our keypoint labels on the YCB-Video dataset can be
seen in Fig. 8, and Fig. 9 for the T-LESS dataset. Specif-
ically, we split the objects into three categories based on
the overall shape – box-like, cylinder-like, and hand tool
– and choose a unified set of keypoints for each of these
shape classes based on the most identifiable features. We



found that picking a set of keypoints for each one of these
classes can accurately describe the shape of the objects for
the YCB-Video and T-LESS datasets, and the keypoint net-
work had a relatively easy time learning the keypoints de-
spite the fact that the shapes of some objects are not exactly
rectangular, cylindrical, etc. In order to increase the number
of keypoints and their potential usefulness in a downstream
application, we also add some instance-specific keypoints,
such as brand names, bar codes, and hand grips, which only
show up in the YCB-Video dataset. Such keypoints can still
be shared among multiple instances of objects in the YCB-
Video dataset, but sometimes occur between shape classes
(e.g., bar codes show up on the box-like cracker box and
also the cylindrical soup can).

Labeling tool. To label the keypoints, we create a sim-
ple labeling program which allows the user to pick the
same keypoint (say keypoint k) multiple times on the CAD
model, and takes the average 3D location in the CAD model
frame as the final 3D keypoint location Opk. The tool also
allows the user to pick the canonical view {Oc} used in Eq.
6 by simply rotating the object into the correct view. This is
especially important in the YCB-Video dataset, where the
object models are not already rotated into a canonical view
as they are for T-LESS. The labeling program will be in-
cluded along with our keypoint labels in the software re-
lease, which will be made available upon publication of
this work. Detailed instructions for how to reproduce our
keypoint labels will also be included in this release (i.e.,
the rules we used to determine where each keypoint goes),
which can also be used to label keypoints on other datasets
with objects similar to YCB-Video and T-LESS. We found
that, after the user is acquainted with the labeling program,
it only takes a few minutes per object to label the keypoints.
In the future, we would like to reduce the labeling task for
the shape class-specific keypoints, since there should be a
simple set of heuristics to automatically label these when
given the CAD model in a canonical view.

E. Extended Results

YCB-Video per-object results. As mentioned in Sec.
4.2, we provide more detailed results for each object on
the YCB-Video dataset. The results are presented in Ta-
ble 3. Here our method displays superior AUC of ADD and
ADD-S for the majority of the objects. For the five sym-
metric objects, which are highlighted in bold blue in Ta-
ble 3, our method has the best AUC of ADD-S for four of
them – which shows our ability to handle these symmetric
objects effectively. Note that the ADD metric is not very
important for symmetric, since it checks for the match to
the actual ground truth pose – which is arbitrary due to the
symmetry – while the ADD-S simply checks if the shape of
the object matches well between the ground truth and esti-

mated poses [35]. This is clear especially for the case of the
wood block, where our method actually scores a 0.0 AUC of
ADD, while beating all other methods in the AUC of ADD-
S metric. This is because our estimated pose for this object
correctly aligned the CAD model to the scene to match the
shape, but with a symmetry transform that yielded a com-
pletely different orientation from the ground truth.

Qualitative results. More qualitative results are shown in
Fig. 10. Here we show three success cases and one fail-
ure case for both the YCB-Video and T-LESS datasets. Our
system is able to estimate correct poses for a wide variety
of difficult objects even in the presence of occlusion and
bad or missing detections. A common failure case that we
saw is the system initializing objects (especially symmetric
ones) upside down. While we showed the only such case
we found in the YCB-Video dataset, this is especially com-
mon in the T-LESS dataset where it is harder to distinguish
the top from the bottom for many objects. Reliably solv-
ing such edge cases is an interesting question to answer in
future research.



Table 3. Detailed results on the YCB-Video dataset. Bold blue objects are symmetric.

PoseCNN [35] DeepIM [15] PoseRBPF [4] MHPE [5] Ours
Objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
002 master chef can 50.9 84.0 71.2 93.1 63.3 87.5 67.9 93.8 75.0 87.8
003 cracker box 51.7 76.9 83.6 91.0 77.8 87.6 67.8 82.9 84.0 90.6
004 sugar box 68.6 84.3 94.1 96.2 79.6 89.4 83.1 91.3 86.4 91.5
005 tomato soup can 66.0 80.9 86.1 92.4 73.0 83.6 79.5 92.2 85.3 93.5

006 mustard bottle 79.9 90.2 91.5 95.1 84.7 92.0 81.6 90.8 94.2 96.2

007 tuna fish can 70.4 87.9 87.7 96.1 64.2 82.7 78.0 92.5 84.3 92.7
008 pudding box 62.9 79.0 82.7 90.7 64.5 77.2 45.4 71.5 84.1 92.4

009 gelatin box 75.2 87.1 91.9 94.3 83.0 90.8 76.1 87.8 94.0 95.9

010 potted meat can 59.6 78.5 76.2 86.4 51.8 66.9 69.1 85.5 83.7 91.7

011 banana 72.3 85.9 81.2 91.3 18.4 66.9 87.7 93.7 87.3 94.3

019 pitcher base 52.5 76.8 90.1 94.6 63.7 82.1 76.8 88.8 89.4 93.9
021 bleach cleanser 50.5 71.9 81.2 90.3 60.5 74.2 47.7 70.3 61.7 70.5
024 bowl 6.5 69.7 8.6 81.4 28.4 85.6 40.2 80.1 32.8 76.9
025 mug 57.7 78.0 81.4 91.3 77.9 89.0 40.6 72.8 84.8 92.6

035 power drill 55.1 72.8 85.5 92.3 71.8 84.3 39.5 71.2 85.5 92.2
036 wood block 31.8 65.8 60.0 81.9 2.3 31.4 64.6 85.5 0.0 86.3

037 scissors 35.8 56.2 60.9 75.4 38.7 59.1 64.5 88.9 79.2 91.2

040 large marker 58.0 71.4 75.6 86.2 67.1 76.4 81.1 90.6 84.9 94.7

051 large clamp 25.0 49.9 48.4 74.3 38.3 59.3 49.2 70.7 47.2 83.0

052 extra large clamp 15.8 47.0 31.0 73.3 32.3 44.3 8.6 47.4 86.3 94.1

061 foam brick 40.4 87.8 35.9 81.9 84.1 92.6 75.1 92.6 87.4 93.8

Mean 51.7 75.3 71.7 88.1 58.4 76.3 63.1 82.9 76.1 90.3

Figure 10. Supplementary qualitative results for the YCB-Video (left) and T-LESS (right) datasets. The top three rows show some
successful pose estimates from our system while the bottom row shows a failure case. The failure in both cases is from initializing objects
upside down. The bowl on the bottom left and the orange object on the bottom right is upside down while the are upside down.


