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Supplementary Material

In this supplementary document, we provide additional
implementation details (Sec. A) and qualitative and quanti-
tative results (Sec. B).

A. Implementation Details

Network Architectures. The PointNet encoder in Sec. 4
is implemented as an eight-layer perceptron network inter-
leaved with ReLU activations and skip connections as in the
previous work [28]. The shared MLP occupancy decoder is
illustrated in Figure B.2.

Sampling Strategy in the Local Shape Decomposition
(Sec. 4.1). Each local articulated part in Figure 2 is tem-
porarily represented as a point cloud by sampling points on
the mesh surface. Each point is sampled by first selecting
a mesh face with probability proportional to the face area
and then randomly sampling barycentric coordinates in or-
der to calculate a point on the selected face. To further bal-
ance the overlap among local articulated body parts, the kth
point cloud allocates one half of its capacity to encode the
central component corresponding to bone Gk, whereas the
other half covers the whole local articulated body part re-
gion. This design guides the neural networks to properly
learn localized occupancy fields, where the largest part is
reserved to represent the core bone component, while fewer
samples for the non-central parts encourage smooth inter-
polation between connected occupancy fields.

In all experiments, we used a total of 1000 samples per
body part which are encoded as local body codes zk with
128 dimensions.

B. Additional Results and Experiment Details

Additional Results. We provide additional qualitative re-
sults for the generalization experiment (Sec. 5) in Fig-
ure B.1 and additional quantitative results of two more base-
lines (NASA [8], LEAP [28]) in Table B.1 for the single-
subject experiment.

Resolving Self-intersections (Sec. 5.2). For the base-
line [35, 49], we used default configuration parameters
provided by the authors except for the collision weight,
which we increased from 0.0001 to 0.005 for better per-
formance. Our self-intersection procedure uses standard
gradient-based optimization with a learning rate of 0.007
and a total of 1300 query points sampled (arbitrarily cho-
sen) in the intersected volume of colliding bounding boxes.

Neural-GIF [48] LEAP [28] COAP GT

Figure B.1. Generalization to unseen humans. Comparison of
our model with LEAP [28] and Neural-GIF [48] for the identities
of the DFaust [5] and the PosePrior [1] datasets performing chal-
lenging novel poses from the PosePrior dataset. These qualitative
results supplement results displayed in Figure 1 and Table 2.

Resolving Collisions with 3D Environments (Sec. 5.3).
For the human-scene reconstruction pipeline, we use the op-
timization schedule from the PROX pipeline [13] with the
original weighting terms. Our proposed collision term is
added to the final optimization loss and weighted by 100.
Please see the supplementary video for qualitative results.
The optimization algorithm is sensitive to estimated joint
locations and cannot resolve deep collisions with the envi-
ronment (Figure B.3).
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Figure B.2. Architecture of the local MLP decoder. The input parameters correspond to the kth articulated body part. Deterministic
differentiable blocks are shown in black, fully-connected layers are shown in gray. the number inside each block denotes the dimensionality
of the input feature vector, the number in the top-right corner denotes layer repetition, the operator ⊗ denotes feature concatenation, the
operator � denotes multiplication, IBk is an indicator function returning the value 1 if the local query is inside the bounding box Bk or 0
otherwise. All fully-connected layers are activated by Softplus with beta of 100 and a threshold of 20. The final output of the decoder is
the occupancy prediction ôkx for the kth articulated part.

Female Subjects Male Subjects
Method 50004 50020 50021 50022 50025 50002 50007 50009 50026 50027

NASA [6] 77.75/77.68 55.93/80.20 90.99/78.13 90.87/77.86 71.20/78.64 68.14/74.82 67.57/71.82 44.84/74.32 87.44/77.47 48.84/79.30
LEAP [28] 88.53/67.05 90.42/77.84 89.84/76.15 88.18/64.79 91.33/77.09 74.67/35.31 83.65/53.83 84.04/65.81 88.78/68.29 90.76/77.35
SNARF [6] 95.75/84.32 95.42/86.32 95.43/86.07 96.08/85.47 95.57/85.01 96.05/82.50 95.69/82.11 94.44/83.41 95.35/83.41 95.22/84.91
COAP 95.97/85.35 95.84/87.62 95.57/86.82 95.98/85.65 95.84/86.28 96.61/82.96 95.27/81.90 94.91/84.90 96.07/85.89 95.78/86.90

Table B.1. Single-subject neural implicit models. Comparison with NASA, LEAP and SNARF [6] on per-subject training. There results
supplement results displayed in Table 1.

Figure B.3. Limitation - resolving collisions with 3D environ-
ments. The optimization algorithm has difficulties resolving deep
collisions with the environment as demonstrated here for an exam-
ple from the PROX dataset [13].

Steps: 1% 5% 10% 15% 25% 30% 40% 50% 60% 70%
IOU: 96.86 96.93 96.96 96.96 96.97 96.98 96.98 96.98 96.97 96.96

Table B.2. Ablation of the bounding box size.

Ablation of the bounding box size. We further study the
impact of the size of the bounding boxes Bk on model per-
formance. We compute the uniform IoU in Table B.2 for a
varying number of up-sampling steps for the generalization
experiment on the PosePrior dataset (Tab. 2 in the paper).
Very tight boxes (less than 10% of the original size) slightly
degrade the representation quality, while the performance
saturates at 15%. We decided to use a tight box in this
range for the experiments simply because these bounding
boxes are used to detect an initial set of potentially collided

body parts for resolving self-intersections. If the boxes are
too large, the initial set of candidates would be larger and
slow down the optimization.
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[19] Ladislav Kavan and Jiřı́ Žára. Spherical blend skinning: a
real-time deformation of articulated models. In Interactive
3D graphics and games, 2005. 2

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent.,
2015. 5

[21] Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. Vibe: Video inference for human body pose and
shape estimation. In IEEE Conf. Comput. Vis. Pattern
Recog., 2020. 8

[22] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In Int. Conf. Comput.
Vis., 2019. 8

[23] John P Lewis, Matt Cordner, and Nickson Fong. Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Computer graphics and in-
teractive techniques, 2000. 2

[24] Yijing Li and Jernej Barbič. Immersion of self-intersecting
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