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1. Supplementary

We include additional experiments in §1.1, §1.2, §1.3,

§1.4, §1.5, §1.6, §1.7. Additional implementation details

are in §1.8. More experiment justifications are in §1.9.

1.1. Localization Error Visualization

To visualize the localization error, we picked a floor

map that has a high density of panoramas from ZInD. Such

high density samples will allow us to analyze the results

of our framework based on a wide range of imagery loca-

tions within the room geometry. Fig.1 shows localization

errors for both panoramas and perspective crops from those

panoramas. As can be seen, our framework has a consis-

tent performance with panorama queries, showing minimal

(c) Panorama Rot. Error (d) Persp.90° Rot. Error

(a) Panorama GT & Est. (b) Persp.90° GT & Est.

Figure 1. Localization Error Visualization. (Top) GT and esti-

mation visualization. Red oriented-circles indicate GTs, and blue

are estimations. Corresponding estimations are connected with

green lines. (Bottom) Rotation error are visualized with arrowed

lines, where straight-up lines indicates zero rotation error.

bias to sampling location of within the rooms (i.e. room

center/corner) or to room attributes (i.e. size/shape of the

room). For perspective queries, certain amount of failure

cases emerges due to the ambiguities. The rotation error

visualization shows that the failure cases are usually sub-

ject to the canonical rotation errors (i.e. −90°, 90°, 180°),

indicating a non-random failure pattern (i.e. failed from am-

biguities) within the Manhattan world map.

1.2. Robustness to Map Noise

To measure robustness of our framework to the noise in

maps, we add Gaussian noise with different variances to

the map points’ location. In this setting, other input fea-

tures of map points are kept the same. We did not train

or fine-tune the models with the noisy maps. Our results

show our method is robust to a reasonable level of noise

(i.e. std=0.1m) while the performance gradually degrades

with the increasing noise levels. The proposed method still

produces a 67% 1m recall for panorama queries and 30%

for persp-90° queries with noise levels as high as std=0.5m,

where the map is largely corrupted.
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Figure 2. Robustness to map noise. (Top) Maps with different

Gaussian noise levels. (Bottom) Recall/accuracy under different

noise levels.
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1.3. Robustness to Map Sampling Intervals

We test the performance of our method under different

map sampling intervals. Fig.3 shows that our method con-

sistently gains better performance with denser map sam-

pling. Such improvements becomes marginal for finer in-

tervals than 10cm, which suggests 10cm as a good balance

between the computational cost and localization accuracy.

1.4. Robustness to Camera Roll/Pitch

Fig.4 shows the effect of noisy (i.e. non-zero) camera

pitch/roll to the performance of our method with perspec-

tive queries. To this end, we added variations to the camera

pitch/roll sampled from a Gaussian distribution with dif-

ferent variances when cropping perspective images from

panoramas. Such variations are not used for training/fine-

tuning our model. Our experiments show that pitch/roll

variations have more impact on rotation error while having

a less impacts on translation.

1.5. Performance to Data Attributes

In this section we study effects of two attributes:

furnishing-level and query image saliency.

Furnishing level. Table.5(Left) shows the performance of

our method in the presence of different furniture levels on
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Figure 3. Robustness to map sampling intervals. (Top) Vi-

sual examples of different map sampling intervals. (Bottom) Re-

call/accuracy w.r.t. different map sampling intervals.
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Figure 4. Robustness to camera pitch/roll (persp-90°). (Top)

Visual examples of perspective images with different roll/pitch.

(Bottom) Recall/accuracy under different roll/pitch.

Recall @ 1m (%)

Furnishing
Panorama Persp. 90° FoV

- Random Saliency

Empty 96.23 58.40 75.19

Simple 95.82 56.92 69.12

Full 95.52 55.80 64.17

Figure 5. Performance of data attributes. (Left) Perfor-

mance under furnishing-levels and photo saliency. (Right)

Saliency-aware sampling estimates column-wise saliency value

for panorama and crops the perspective image from the region with

highest saliency response.
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Figure 6. Uncertainty estimation v.s. real error distribution.

The uncertainty estimation is shown with averaged posterior map

crops around GT location. The real translation error distribution is

shown in 2D histograms where GT locates at centers.

S3D dataset. As can be seen the performance of our method

is only slightly impacted by furniture.

Query Image Saliency. To study the influence of content

richness in the query images, we introduce a saliency-aware

image cropping as shown in Fig.5(Right). While the per-

spective images in our experiments are cropped from the

dataset panoramas, this saliency-aware strategy crops per-

spective images with a yaw-angle that gives the highest

saliency response under the spectral residual approach [3].

Contrary to the default random cropping, the saliency-aware

strategy simulates human photography behavior of taking

photos with rich contents. Photos with higher saliency

effectively avoids capturing less-informative photos (e.g.

empty walls) that improves the recall largely. When the

room is less furnished, the improvements become higher

since the saliency has a higher chance to capture the local-

ization landmarks such as windows/doors that are helpful

for localization instead of interior/furniture.

1.6. Uncertainty Qualitative Study

We study the goodness of uncertainty estimation by com-

paring it with the empirical error distribution. As shown in

Fig.6, with increasingly challenging (i.e. less FoV) query

images, the variance of localization error grows larger. This

is successfully reflected in our posterior estimation, where

the model becomes less certain on the GT location and the

predicted likelihoods diffuse to a larger region.



1.7. Map retrieval.

In this experiment, we test if we can retrieve the map that

an arbitrary query panorama belongs to from the map set.

We randomly pick one panorama from each map, and ex-

haustively match the panoramas to all maps. We record the

maximum score of each matched posterior map in an affin-

ity matrix. As shown in in Fig.7, the result affinity matrix

has a clear diagonal with high response values, which re-

flects the high recall rate of our method. The non-diagonal

elements of the matrix has a row-dependent pattern, that

reflects the ‘commonness’ of the room in the query image.

We also sorted the map with the number of rooms they have.

Maps with less rooms have lower scores for all queries on

average, which is reflected with its dimmer column in the

matrix. The right histogram show the rank of GT floor

maps, where our model has 70% and 50% top-1 accuracy

on ZInD and S3D for retrieving the correct map from more

than 200 maps. This reflects a good expected performance

if the map is in a very large scale (e.g. shopping mall).

1.8. Implementation Details.

Training details. Our training uses Adam optimizer [5]

on batch size of 8. During the training, maps are randomly

sampled to a fixed 2048 points, which approximately gives a

5cm average sampling interval for both ZInD and S3D. The

map point coordinates are scaled up to meter and normal-

ized to have zero mean. We apply random rotation trans-

forms to all map points as training augmentation. A Point-

Net [7] without feature transform is used for encoding the

map to rendering codebooks. The image branch processes

the feature maps from the last layer of a ResNet50 [2] into

circular features. The ResNet is initialized with pretrained

weights on ImageNet [6]. The refinement branch uses two

1D convolution layers with circular padding followed by a

fully-connected layer. The 1D convolution layers both have

kernel size of 3 and stride of 1.

Hard negative sampling. A uniform random sampling

strategy in the 3D camera pose space most likely yields easy

negative samples that does not efficiently contribute to the

training. Hence, for training efficiency, we split the 100

negative samples evenly to three groups. We let the first

group have random rotation and translation, second group

have gt rotation and random translation, third group have

random rotation and gt translation. This sampling strategy

is an augmentation for efficiently sample hard negative sam-

ples for distance and incident-angle codebooks respectively.

Specifically, the second group (gt rotation, random transla-

tion) has a higher probability to hit the samples that are dif-

ficult to distinguish using the incident-angle codebook (i.e.

same rotations yield similar incident-angle observations in

Manhattan world map). This forces the network utilize the

distance codebooks to distinguish those samples. Similar-

ity, the third group (random rotation, gt translation) are used
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Figure 7. Map retrieval. (Top: ZInD) (Bottom: S3D) We ran-

domly pick one panorama from each map, and exhaustively match

the panoramas to all maps. The left affinity matrix record the max-

imum score of each posterior map for each matching, while the

floor map are sorted with number of rooms in the map. The right

histogram show the rank of GT floor maps.

to augment incident-angle codebooks (i.e. with same trans-

lations, similar distance observations can be achieved when

rotations are sampled close to gt). Note we exclude the third

group that has gt translation from the context loss, since the

circular feature context defined in Eq.13 of the main paper

is agnostic to rotation.

Rendering Algorithm. To render a circular feature of a

camera pose hypothesis, we first project all the map points

onto the circular feature segments, where the map point fea-

tures are determined during the projection. We consider the

closest map point for each segment as visible, and discard

other invisible (i.e. occluded) map points. Based on the

distance between the projected locations and the segment

centers, we linearly interpolate the feature of each segment

with the features from its two closest map points. For ren-

dering fidelity, we first render a higher resolution circular

feature with 64 segments, then average pool it to V = 16

segments.

1.9. Experiment Justifications.

ZInD vs S3D. We did most ablation experiments on the

real-world ZInD dataset for its realistic house layouts and

diverse photo capture locations, while S3D only has single

capture per room and bias more to room center.

Shared codebook. In main paper Table.2, where we show

performance when replacing the PointNet with a fixed

shared codebook. In this experiment, we learn a shared



codebook for all map points and separate codebook off-

sets for each semantic label. For semantically-labelled map

points, we add the offset codebook of its semantic label

to the shared codebook as the map points’ final codebook.

This offset codebook scheme is for balancing the training

progress due to the unbalanced number of semantically-

labelled map points. With the presence of PointNet, the

framework has a global scope that extracts a global descrip-

tor of the map. The global descriptor is used implicitly by

the PointNet to fine-tune different codebooks for individual

map points. Thus the performance slightly drops without

PointNet. However, a shared codebook may have its own

preferred applications. For instance, a shared codebook can

save memory when storing codebooks for each map point is

memory-consuming with a large scale map.

Equirectangular vs Perspective. In main paper Fig.7(a),

with same horizontal FoV, our models exhibits better trans-

lation accuracy with equirectangular images but better ro-

tation accuracy with perspective images. This is because

in equirectangular images, the 180° vertical-FoV captures

the room layout edges of floor/ceiling that are good cues for

learning better distance estimation. Similarly, under per-

spective projection, the rotation is well expressed in the

slope of room layout edges (i.e. horizontal edges are flat-

tened when yaw-angle rotation is aligned with walls).

MCL baseline. The MCL [1] with simulated ground-truth

LiDAR input defines a strong baseline for non-semantic

map input. For panorama, we simulate a 72-rays LiDAR.

For perspective images, number of rays are reduced ac-

cording to FoV (e.g. 18 rays for 90° FoV). We use the

same likelihood model (i.e. Gaussian disturbance) as in [1].

With same amount of samples, our method (w/o semantics)

performs similarly to MCL in recall, where their posterior

maps are also similar as shown in Fig.4 in main paper.

LaLaLoc baseline. LaLaLoc [4] is a learning-based MCL

framework for panorama localization. LaLaLoc renders and

encodes a panorama layout depth map for individual camera

hypothesis. LaLaLoc requires the query panorama to have

known rotation, thus suffer less from symmetric ambigui-

ties. To visualize the posterior map from non-grid sampling

of LaLaLoc, we linear interpolate a convex polygon from

its samples, resulted in a black triangle at left-bottom cor-

ner. With the high fidelity depth map rendering and CNN

(i.e. ResNet18) encoder, the sampling process for LaLaLoc

is very expensive as shown in Table.3 in the main paper.

PfNet baseline. PfNet [8] uses spatially transformed map

under top-down view (i.e. bird’s-eye view) to represent

camera pose hypothesises. PfNet extracts feature maps for

the query image and the sampled map images, where their

likelihoods are estimated with CNNs taking input of stacked

feature maps. Compared to LaLaLoc, PfNet has relatively

light-weight rendering process and network architecture, re-

sulted in its faster sampling rate. However, given PfNet

framework was originally designed for sequential time up-

dating (i.e. particle filter), it does not perform very nice

with single query given the large domain difference (i.e.

view-point) of its rendering (affine top-down view) to the

observation (perspective front view).
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