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The main paper focuses on deriving a new unified model
for 3D line projection in catadioptric cameras. However,
the experimental results show some line-image fittings. Al-
though this is not the paper’s main contribution, the fitting
of line images in the image of general catadioptric cameras
was never shown before. These supplementary materials
describe the fitting technique used. First, we explain our
RANSAC-based line fitting in more detail and show some
figures with the obtained results with synthetic data. Then,
as shown in the main document, we offer the advantages of
having a unified model instead of previous techniques in the
presence of small misalignments.

MATLAB scripts with all our derivations and with
some results shown in this supplementary materials are
available at https://github.com/pmiraldo/line-projection-
catadioptric.

A. Line-image fitting
Since line projection in general catadioptric cameras is

generally modeled by high degree polynomial equations
(implicit functions), getting its coefficients do not work in
practice, namely when noisy data is used. Instead, we de-
rive a method that takes into account the general non-center
properties of the catadioptric cameras to compute the coef-
ficients of the I(u, v) by estimating a 3D line and applying
the derivations of the paper (Thm. 3 in the main document).

This subsection presents our RANSAC-based line-image
fitting technique. The method is a simple technique
that builds on the standard RANdom SAmple Consensus
method (RANSAC) [5]. As mentioned above, instead of
obtaining the polynomial coefficients from the 2D image
pixels that are images of a 3D line, we compute its 3D co-
ordinates. As known, 3D lines have four degrees of free-
dom [9]. It is also known that each line intersection gives
one algebraic constraint. (See the general epipolar geome-
try in constraint in [8].) Then, for non-central systems, the
use of four pixels per line image is enough to get its 3D pa-
rameters. Each pixel gets a 3D projection ray; with four, we
can compute the 3D line passing through them using [10].

With the details presented in the previous paragraph
and our line-image derivations (I(u, v) in Theorem 3), our
RANSAC-based line-image fitting is derived as follows.
We consider a RANSAC cycle, in which, for each iteration:

1. Since a minimum of four pixels is needed for estimat-
ing the 3D line coordinates, we start by sampling a
set of four pixels that are potential images of a line,
(ui, vi) for i = 1, 2, 3, 4, and compute the four inverse
projection ray corresponding to each of the four pixels
(di,mi), again for i = 1, 2, 3, 4. For that, we need
camera system parameters A, B, C, c2, c3, R, and K;

2. Using [10], we compute the 3D line parameters that
pass through the set of lines (di,mi) for i = 1, 2, 3, 4;

3. Using the estimated 3D line in the previous step, we
compute the line image-hypothesis I(u, v) = 0, using
Thm. 3 in the main paper;

4. We do inlier counting using I(u, v) = 0, by comput-
ing a distance between the pixels in the image (line
image candidates) to the curve. The ones with a value
smaller than a defined threshold are considered inliers.

We repeat the process a certain number of iterations, and
the final line-image I(u, v) is given by the hypothesis that
obtained the largest number of inliers.

We run some evaluation tests using synthetic data to val-
idate the proposed line-fitting method. We start with a sim-
ple example using a catadioptric camera with a spherical
mirror: A = 1, B = 0, C = 150, c2 = 4, c3 = 25,
with the internal perspective camera parameters indicated
in the main document. To generate the synthetic data, we
follow the same steps as the ones shown in the main docu-
ment. In addition, for a 3D line, we sample 500 points and
project them into the image using the method in [1]. Then,
we add noise to the projected points; a normal distribution
with a standard deviation of 1 pixel was used. To conclude,
we add 50 outliers to the image. All image points coordi-
nates are rounded up to have (integer) image pixels. For the
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Three RANSAC iterations Final Result

Figure A.1. Running example of the proposed RANSAC-based 3D line projection fitting method. From left to right, we show the used
spherical catadioptric system; three RANSAC iteration examples where red points represent the sample pixels, the black curve is the
respective hypothesis for I(u, v); and, at the right, the final result (green curve is the ground truth and red curve depicts the estimated line
projection).

low-noise med-noise high-noise +outliers ++outliers

Figure A.2. We show the results of our RANSAC-based line image fitting with different noise levels and number of outliers. The catadiop-
tric systems used were the general and the parabolic, described in the main document. As in Fig. A.1, the red curve is the one estimated by
our method; green is the ground-truth 3D line projection. On the left, we show the used system.

RANSAC loop, we consider 1000 iterations and use 2 pix-
els as a distance threshold for the inlier counting. Results
are shown in Fig. A.1.

Next, we run a few more experiments using two of the
systems presented in the main paper (See Tab. 2 in the main
document), with different outliers and noise levels. Three
different levels of noise are considered:

• low-noise: corresponding to 1 pixel of standard devia-
tion;

• med-noise: corresponding to 3 pixels of standard de-
viation; and

• high-noise: corresponding to 5 pixels of standard de-
viation

Then, for the med-noise, we consider three different num-
bers of outliers:

• +outliers: 100 pixels; and

• ++outliers: 500 pixels.

We use the same RANSAC cycle settings presented in the
previous paragraph, with the inliers threshold equal to 2 pix-
els. Results are shown in Fig. A.2. From this figure, we can

conclude that the 3D line projection fitting technique works
well. Even with high noise levels and many outliers, the es-
timator can get an almost perfect fit of the projected points.
As we can see, all the curves representing the image of the
mirror sheet where the reflection occurs are matched cor-
rectly. Only in the challenging general case for high noise
is the curve not perfectly matched due to noise and the fact
that this part of the curve represents points where the line
terminates at infinity. Still, all the projected points corre-
sponding to the line image are correctly fitted. We also want
to highlight that these 3D coordinates of the lines are be-
ing estimated with only minimal data. As known, getting
the 3D line coordinates from a single catadioptric image
is a very challenging problem, especially in estimating the
depths of the lines (see [4, 6, 7]). Still, we show in these re-
sults that we can have satisfactory line-image fittings using
minimal data and RANSAC by estimating the 3D coordi-
nates of a line. For improvement concerning 3D estimation,
the next step would be to take all the inliers from our method
and run [4, 6].
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Figure B.3. Running example like Fig. A.1, but considering a central hyperbolic catadioptric system with a misalignment of 5% in y–axis.
On the left, we show the used catadioptric system. Then, we present three RANSAC iterations where red points represent the sample
pixels, the black curves represent the projection of a 3D line using our unified model I(u, v), and the blue curves represent the projection
of the 3D line using the specific model defined in the literature [2, 3]. At the right is the final result. In red, we show our result, which is
overlapped with the ground-truth, in green. Finally, the best model using the model in the literature is shown in cyan.

1% 5% 10%

Figure B.4. This figure shows the final results of running the RANSAC-based fitting technique using our unified model against the
previously derived specific models in [2, 3], with misalignments of 1%, 5%, and 10%. As in Fig. B.3, red and cyan curves represent the
outputs of our RANSAC-based line fittings, using our unified model and the previous methods, respectively. The green curve is the ground
truth.

B. Exact vs. approximate modelings

We further motivate the need for unifying modeling for
line projection instead of specific modelings [2,3]. We con-
sider the same setup shown in the main document again, in
which we consider systems with small misalignments. Fi-
nally, we run the fitting technique defined in the last section.

As before, we sample 500 image points in the line and
use the med-noise and 50 outliers. We take the specific
systems shown in the main document (Tab. 2 at the main
document) and run in parallel the RANSAC described in
the previous section and a similar one that, instead of us-
ing the proposed unified projection model, uses the current
method in the literature for the 3D projection of lines. As in
the main document, to motivate the need for having a uni-
fied model, we use a central hyperbolic catadioptric camera
and a minor misalignment of 5% in the y–axis. The results
are shown in Fig. B.3, where we show some iterations of
the RANSAC cycle and the final result. The first thing one
notices is that the curves generated from the previously de-
fined specific model (in blue), since they consist of approxi-
mations, do not pass through the image of the four sampled

points (in red) – the curve generated from the unified model
in black pass through the respective image pixels. Concern-
ing the final results at the right of Fig. B.3, we see clearly
that, while our method in red fits perfectly the points and the
ground truth curve (in green – overlapped), the one using
the previously defined specific catadioptric systems projec-
tions (curve in cyan) is significantly deviated and do not fit
all the projected points.

To conclude, we show different results with our unified
model vs. approximate modelings in the literature, consid-
ering different noise levels and misalignment. We consider:

• 1% of misalignment;

• 5% of misalignment;

• 10% of misalignment.

The results for two different systems in Tab. 2 of the
main document are shown in Fig. B.4. We can see that,
even though for deviations of only 1%, the results are
still acceptable for the fitting with previous specific models
(marginally the same for the ellipsoidal system), increasing
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Figure C.5. Green curves in the image and lines in the 3D rep-
resent the GT. Red curves and lines are the estimated projection
curve and 3D line. Blue points represent the 2D points used in the
estimation. We show results for low-noise and high-noise at the
left and right, as described in the supplementary materials.

the variation to 5% is enough for these models to fail in the
line-image fitting. For 10% of deviation, previous models
do not work. On the other hand, our unified modeling works
as expected.

C. 3D line estimation accuracy
Getting the 3D coordinates of a line from a line-image in

non-central catadioptric systems is very challenging. Fig-
ure C.5 shows some results for two levels of noise. We fol-
lowed the line fitting technique described above. We show
two noise levels and observe that, in general, RANSAC han-
dles this problem well, and the 3D estimates are reasonable.
As expected, we get worse 3D estimates when the portion
of the line visible in the image reduces significantly or when
the camera/line configuration gets near a degenerative case.
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