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In the following, we summarize our evaluation details to
support reproducibility (Section 1), provide further ablation
results (Section 2) and present detailed results for applying
DUA on additional adaptation tasks (Section 3).

1. Evaluation Details
Number of Samples: DUA requires only a tiny fraction
of the (unlabeled) test set to achieve competitively strong
results. The exact numbers are listed in Table 1. Note that
after adaptation on these specific number of samples, the
adaptation performance always saturates. We conducted all
experiments on a single NVIDIA® GeForce® RTX 3090.

Batch Augmentations: As evaluated in our ablation
study (main manuscript Section 5), augmentations help to
further improve the adaptation performance. In our experi-
ments we use random cropping, random horizontal flipping
and rotating by specific angles (0, 90, 180, 270 degrees).
Figure 3 shows an exemplary batch of size 64.

Corruption Benchmarks: To train the ResNet-26 [5]
backbone on CIFAR-10/100 [8], we use a batch size of 128.
We train the model for 150 epochs and use Stochastic Gra-
dient Descent (SGD) as optimizer with learning rate 0.1,
momentum 0.9 and weight decay 5·10−4. We use the multi-
step learning rate scheduler from PyTorch with milestones
at 75 and 125 and set its γ = 0.1. For training we use ran-
dom cropping and horizontal flipping as augmentations.

Domain Adaptation for Classification: We use an
ImageNet-pretrained ResNet-18 from PyTorch and finetune
it on the Office-31 [15] train split. For this finetuning, we
train the model for 100 epochs with SGD, initial learning
rate 0.1, momentum 0.9 and weight decay 5 · 10−4. We use
the PyTorch multi-step learning rate scheduler with mile-
stones at 60 and 75 and set its γ = 0.1. For VIS-DA [12]
we use a ResNet-50, while all other settings are kept the

same as for Office-31. We again use random cropping and
horizontal flipping as augmentations during training.

Digit Recognition: For these experiments we use a sim-
ple architecture, consisting of 2 convolution layers, 2 lin-
ear layers and 2 batch normalization layers. We also use 2
dropout layers in the classification head for regularization
with dropout probabilities p = 0.25 and p = 0.5, respec-
tively. For each of the datasets, we train this model using
ADADELTA [18] for 15 epochs and use a batch size of 64.

Object Detection: For all our object detection ex-
periments we use a YOLOv3 [14] pretrained on MS-
COCO [10]. Then, we retrain the model for 100 epochs
on each of the training splits of the respective datasets. We
use a batchsize of 20, while all other optimization settings
and augmentation routines for training are taken from the
PyTorch implementation1 of YOLOv3.

2. Additional Ablation Results
2.1. Sample Order Does Not Matter

As described in the main manuscript (Section 5), the
sample order does not matter. Here, we include the detailed
plot for all the 300 runs in Figure 1, which shows that DUA
is consistently stable across all runs.

2.2. Choice of Momentum Decay Parameter

The momentum decay parameter ω helps to provide sta-
ble and fast adaptation on the incoming samples. The effect
of varying ω values is analyzed in Figure 2. From this ex-
periment we understand that the adaptation is unstable for
a higher value of ω, while it is slower for a lower value.
Thus, we use ω = 0.94 for all reported experiments, which
empirically provides both stable and fast adaptation.

1https://github.com/ultralytics/yolov3
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Dataset
Total no. of samples in No. of samples used % of samples used

test set for adaptation for adaptation

CIFAR-10C [6] 10000 80 0.8%
CIFAR-100C [6] 10000 80 0.8%
ImageNet-C [6] 50000 100 0.2%

MNIST [9] 10000 30 0.3%
SVHN [11] 26032 30 0.1%
USPS [7] 2007 20 0.9%

Office-31 [15] 4110 40 0.9%
VIS-DA [12] 5534 40 0.7%

KITTI [2] 3741 25 0.6%
KITTI-Rain [3] 3741 25 0.6%
KITTI-Fog [3] 3741 25 0.6%
SODA-10M [4] 4991 30 0.6%

SODA10M-Day [4] 3347 30 0.8%
SODA10M-Night [4] 1644 15 0.9%

Table 1. Available number of samples in the test sets vs. number of samples used for adaptation. Note that all datasets except for KITTI
have dedicated test sets. On KITTI, we divide the training set of 7481 images into 3740 train and 3741 test images.

0 25 50 75 100 125 150 175 200

Number of Samples for Adaptation

30

35

40

45

50

M
ea

n
E

rr
o
r

(%
)

Mean (300 Runs)

Standard Deviation

Figure 1. Adaptation results on CIFAR-10C for 300 runs with
ω = 0.94, ρ0 = 0.1. For each run we randomly shuffle the cor-
rupted test sets. We plot the mean error (on 15 corruptions) and
the standard deviation after adaptation on each incoming sample.

3. DUA for Additional Adaptation Tasks

3.1. Domain Adaptation for Digit Recognition

Table 3 summarizes results for cross-dataset domain
adaptation in digit recognition. For all these experiments
we use a simple architecture consisting of 2 convolution
layers, 2 batch normalization layers and 2 fully connected
layers. Our method improves the results for all the popu-
lar domain adaptation benchmarks. Note that we only use
random cropping for digit recognition experiments.
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Figure 2. Adaptation results for CIFAR-10C with different values
of Momentum Decay Parameter ω. At ω = 0.94, we achieve a
good balance between stable adaptation and fast convergence. For
all these experiments ρ0 = 0.1 is used.

3.2. Domain Adaptation for Visual Recognition

In Table 4, we list the results obtained by testing on two
popular domain adaptation benchmarks, Office-31 and VIS-
DA. For VIS-DA we take a ResNet-50, pre-trained on Ima-
geNet and then fine tune it on the VIS-DA train split. For the
Office-31 dataset, we use an ImageNet pre-trained ResNet-
18 which we finetune on the Office-31 train split.

We show that our method achieves improvements on
both Office-31 and VIS-DA datasets. It should be noted
that the purpose of these evaluations is not to outperform the
state-of-the-art methods which specialize on these tasks. In-
stead, we show that DUA is applicable to a variety of tasks



Corruption Type Abbreviation

Gaussian Noise gaus
Shot Noise shot

Impulse Noise impul
Defocus Blur defcs

Glass Blur gls
Motion Blur mtn
Zoom Blur zm

Snow snw
Frost frst
Fog fg

Brightness brt
Contrast cnt
Elastic els
Pixelate px

JPEG Compression jpg

Table 2. Abbreviations of corruption types in CIFAR-10/100C and
ImageNet-C.

and architectures. It can be used as an initial adaptation
method before applying other established domain adapta-
tion methods such as [1, 13, 16, 17].

3.3. Corruption Benchmarks

We provide detailed results for the lower severity corrup-
tion levels 1–4 (highest severity level 5 is included in the
main manuscript) for CIFAR-10C (Table 5), CIFAR-100C
(Table 6) and ImageNet-C (Table 7). Note that the abbre-
viations of the different corruption types are summarized
in Table 2. As can be seen from these results, our DUA
achieves consistent improvements over all corruption types
and severity levels.

3.4. Object Detection

Natural Domain Shifts: Table 8a shows the results for
adapting a detector pre-trained on day images only and
tested on night images. Table 8b and Table 8c report the
domain adaptation results between KITTI and SODA10M.
DUA provides notable gains for all the different scenarios.

Degrading Weather: We provide results for the lower
severity levels of KITTI-Fog and KITTI-Rain [3] in Table 9
(highest severity/lowest visibility is included in the main
manuscript). We see that by adapting a model with DUA,
the detection performance increases even in lower severities
of rain and fog.
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Source data: SVHN [11] SVHN MNIST [9] MNIST USPS [7] USPS Exemplary Images
Target data: USPS MNIST USPS SVHN MNIST SVHN MNIST SVHN USPS

Source only 66 58 78 16 42 9
DUA 71 68 86 33 55 28

Fully Supervised 94 96 95 85 97 91

Table 3. Domain adaptation results (measured by accuracy in %) for digit recognition. All results are obtained by using a simple architecture
consisting of 2 convolution layers, 2 fully connected layers and batch normalization layers.

Source data: Amazon Amazon DSLR DSLR Webcam Webcam
Target data: Webcam DSLR Webcam Amazon DSLR Amazon

Source only 38.4 34.3 12.9 61.4 4.2 66.1
DUA 33.2 29.6 5.7 51.9 2.0 59.7

Fully Supervised 27.1 11.3 3.9 34.1 1.2 22.3

(a) Office-31 [15]

Classification
Error (%)

Source only 57.4
DUA 47.2

Fully Supervised 23.7

(b) VIS-DA [12]

Table 4. Domain adaptation results (measured by classification error in %) for a) Office-31 using a ResNet-18 backbone, and for b) VIS-DA
using a ResNet-50 backbone.

Figure 3. Example of a batch which we create from a single image by augmenting it randomly. The input sample is taken from ImageNet-
C [6] (Level 5) Gaussian Noise Corruption.
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Level 4

Source 63.9 53.7 57.0 28.9 58.9 32.4 38.1 25.9 33.9 17.5 10.4 33.7 26.7 40.7 27.2 36.6
TTT 41.5 35.4 39.8 15.0 47.8 19.1 18.4 20.1 24.0 13.5 10.0 14.1 17.7 29.4 24.5 24.7

NORM 40.7 37.4 43.2 16.7 47.4 21.8 20.2 29.9 30.3 19.0 16.1 20.5 26.5 26.6 35.7 28.8
DUA 31.0 27.6 35.8 13.2 40.7 20.3 15.4 22.2 20.6 12.7 10.1 14.8 20.5 18.6 24.6 21.9

Source 24.1 17.1 16.4 6.6 23.5 8.4 7.4 12.2 11.5 8.3 6.2 9.2 10.6 19.4 13.1 12.9
TENT 13.8 11.7 14.3 6.7 18.6 8.2 7.1 10.6 9.7 7.5 6.1 8.4 10.9 8.5 13.2 10.3
DUA 13.7 11.8 13.5 5.9 18.3 7.6 6.6 10.3 9.0 7.4 5.8 7.2 9.9 9.3 13.0 10.0

Level 3

Source 58.0 47.5 38.5 17.7 46.2 32.8 30.6 22.7 31.8 12.6 9.5 19.3 20.7 23.7 24.7 29.1
TTT 37.2 31.6 28.6 11.5 35.8 19.1 15.8 17.8 23.3 11.0 9.1 11.6 14.3 18.9 22.3 20.5

NORM 37.8 35.1 34.7 14.1 38.2 21.7 18.2 27.5 29.0 16.6 15.2 18.6 19.6 21.1 33.3 25.4
DUA 28.3 24.6 27.0 10.4 30.7 20.2 14.4 20.4 19.3 11.0 9.2 12.3 14.6 15.1 23.1 18.7

Source 20.4 14.6 9.7 5.4 12.9 8.6 6.5 9.9 11.4 6.3 5.5 7.2 7.4 9.6 12.1 9.8
TENT 12.6 10.4 10.4 6.0 12.7 8.1 6.7 9.5 9.1 6.7 5.9 7.5 8.4 7.5 12.7 8.9
DUA 12.2 10.5 9.3 5.5 11.9 7.8 6.1 9.1 9.1 6.1 5.4 6.3 7.0 7.4 11.7 8.4

Level 2

Source 43.1 27.8 29.3 10.2 49.5 23.4 22.4 26.4 21.3 10.3 8.7 13.4 14.7 17.9 22.3 22.7
TTT 28.8 20.7 23.0 9.0 36.6 15.4 13.1 20.2 16.9 9.2 8.3 10.2 12.5 14.8 19.7 17.2

NORM 31.0 25.3 28.7 13.5 38.8 18.8 16.3 27.8 23.9 15.4 14.6 17.1 18.7 19.6 30.6 22.7
DUA 22.3 16.8 22.9 9.2 30.3 16.0 12.7 21.5 15.7 9.6 8.7 11.1 12.7 13.3 20.8 16.2

Source 13.4 8.8 8.0 5.1 14.2 6.5 5.8 9.2 8.5 5.3 5.3 6.1 6.5 7.8 10.9 8.1
TENT 10.2 7.6 8.6 5.9 13.0 7.2 6.2 8.1 7.8 6.3 5.8 6.9 7.5 7.0 11.8 8.0
DUA 10.0 7.5 7.6 5.1 12.4 6.4 5.7 8.3 7.3 5.2 5.2 5.7 6.4 6.8 10.9 7.4

Level 1

Source 25.8 18.4 19.0 8.5 51.1 14.7 18.2 15.0 13.8 8.3 8.3 8.7 14.4 11.3 16.5 16.8
TTT 19.1 15.8 16.5 8.0 37.9 11.7 12.2 12.8 11.9 8.2 8.0 8.3 12.6 11.1 15.5 14.0

NORM 24.0 20.9 22.5 13.4 38.1 16.5 15.5 20.5 18.8 14.9 14.0 15.3 19.1 16.9 24.7 19.7
DUA 16.5 13.8 16.6 8.3 30.4 12.4 12.6 14.5 12.2 8.4 8.4 8.8 13.4 11.0 15.9 13.6

Source 8.7 6.5 6.2 4.9 14.1 5.5 5.9 6.4 6.5 4.9 5.0 5.0 6.9 5.8 8.7 6.7
TENT 7.5 6.9 7.2 5.7 12.4 6.2 6.3 6.8 6.5 5.9 5.7 6.0 7.9 6.5 9.1 7.1
DUA 7.3 6.2 6.2 5.1 11.9 5.5 5.8 6.2 6.1 5.1 5.1 5.1 7.0 5.8 8.5 6.5

Table 5. Error (%) for each corruption in CIFAR-10C severity (Level 1–4) is reported. Source refers to results obtained from a model
trained on clean train set and tested on corrupted test sets. For a fair comparison with TTT and NORM, ResNet-26 is used. For comparison
with TENT we take the Wide-ResNet-40-2 model from their official Github Repository. Lowest error is highlighted for each corruption.
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Level 4

Source 88.3 85.3 92.8 54.3 84.8 57.3 57.2 54.9 65.9 48.6 35.8 61.1 52.9 73.0 61.0 64.9
TTT 81.6 78.3 81.1 48.6 78.7 52.5 53.4 53.8 62.8 49.5 38.5 50.3 50.2 66.2 57.2 60.2

NORM 70.5 67.6 72.1 41.1 69.9 46.1 44.5 54.7 55.2 46.7 38.8 44.1 50.8 49.9 64.2 54.4
DUA 66.0 62.9 66.4 41.3 66.5 48.2 43.0 53.5 52.8 43.2 37.6 45.7 48.2 46.6 57.6 52.0

Source 60.7 51.6 47.9 27.1 54.4 30.3 28.9 37.4 39.0 35.4 27.2 35.9 34.4 39.0 40.1 39.3
TENT 38.9 36.3 36.6 27.3 42.0 28.9 28.4 34.8 32.8 32.1 26.3 29.8 33.3 29.9 38.4 33.1
DUA 43.0 39.0 37.9 26.9 44.7 29.5 28.3 36.5 34.3 33.8 26.6 31.0 33.8 31.0 38.9 34.3

Level 3

Source 86.0 81.4 83.8 42.7 78.3 57.7 52.4 53.0 64.1 40.1 33.3 49.3 46.6 54.4 58.2 58.8
TTT 79.6 74.6 69.3 42.5 73.0 53.2 49.8 51.2 61.4 42.1 36.8 43.5 45.8 52.9 55.2 55.4

NORM 67.7 64.6 62.3 60.9 63.4 42.6 52.6 54.5 41.5 37.8 37.8 41.1 44.3 45.0 61.7 51.9
DUA 63.8 60.0 57.9 37.3 58.4 48.2 41.2 50.8 52.4 39.2 35.5 41.4 41.7 42.1 55.3 48.4

Source 55.2 45.9 36.9 25.7 39.9 30.5 27.4 33.3 38.1 29.5 25.5 30.5 28.6 30.3 38.0 34.4
TENT 37.1 34.3 32.0 26.1 34.6 29.2 27.7 32.3 32.3 29.0 25.6 28.4 29.2 28.3 37.4 30.9
DUA 40.8 36.5 32.2 25.3 37.0 29.6 27.1 32.7 34.4 29.0 25.2 28.6 28.4 28.7 37.3 31.5

Level 2

Source 79.9 66.1 73.7 33.7 79.6 48.9 46.4 56.8 52.4 35.2 31.3 42.1 40.5 48.0 55.2 52.7
TTT 71.5 61.8 59.8 36.5 73.1 47.2 46.0 55.7 52.8 38.0 35.2 39.7 42.0 47.9 52.6 50.7

NORM 61.1 54.9 55.9 36.3 61.1 43.0 40.7 53.0 49.0 39.6 37.0 39.5 42.8 43.3 59.0 47.7
DUA 57.1 50.7 52.0 35.2 58.4 43.8 39.1 52.8 47.6 35.9 34.2 38.9 39.9 39.7 52.9 45.2

Source 44.6 34.5 30.7 24.3 41.5 27.7 26.2 32.7 31.8 26.8 24.4 27.5 27.9 28.0 36.5 31.0
TENT 33.3 29.5 28.8 25.7 34.9 27.4 27.0 30.6 29.6 27.0 25.4 27.3 29.1 27.6 36.3 29.3
DUA 35.9 31.2 28.8 24.1 36.9 27.2 26.0 32.2 30.9 26.1 24.0 26.6 27.9 27.6 35.9 29.4

Level 1

Source 65.0 53.4 54.2 30.3 80.1 40.2 42.9 39.6 43.0 31.0 30.2 31.8 40.3 37.0 48.1 44.5
TTT 60.4 53.0 48.0 34.7 74.0 41.3 41.3 41.5 44.2 34.6 34.4 34.8 41.8 39.4 47.0 44.7

NORM 52.9 48.8 47.7 36.2 60.6 40.1 39.5 43.9 44.0 36.8 36.3 36.7 43.2 40.6 52.0 44.0
DUA 49.6 45.5 44.4 32.5 58.0 39.4 38.3 41.7 41.9 33.2 33.1 33.5 40.8 36.0 47.0 41.0

Source 34.4 29.6 26.9 23.8 42.9 25.6 26.1 26.1 27.4 24.0 23.8 24.3 28.4 25.2 32.4 28.1
TENT 29.3 27.6 26.9 25.5 34.7 26.6 26.7 27.0 27.3 25.6 25.2 26.0 29.8 26.7 32.9 27.9
DUA 31.2 28.5 26.4 23.8 36.9 25.3 25.9 26.2 27.1 24.1 23.9 23.9 28.6 25.4 32.0 27.3

Table 6. Error (%) for each corruption in CIFAR-100C severity (Level 1–4) is reported. Source refers to results obtained from a model
trained on clean train set and tested on corrupted test sets. For a fair comparison with TTT and NORM, ResNet-26 is used. For comparison
with TENT we take the Wide-ResNet-40-2 model from their official Github Repository. Lowest error is highlighted for each corruption.



gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg mean

Level 4

Source 93.2 94.7 94.3 84.5 89.4 85.3 77.2 83.4 79.4 72.8 44.5 88.1 63.4 71.2 58.8 78.7
NORM 84.4 77.6 87.3 86.4 88.0 76.8 70.7 76.9 70.9 56.0 37.8 64.4 53.5 58.6 57.8 69.8
DUA 78.1 82.8 80.3 82.8 83.3 78.7 69.8 76.1 74.2 59.7 40.4 87.3 55.8 61.8 54.9 71.1

Level 3

Source 80.9 82.7 82.9 74.1 85.4 73.9 71.9 73.6 77.8 66.2 39.6 65.3 51.1 56.7 49.3 68.8
NORM 65.5 69.8 63.2 71.1 79.5 63.6 58.2 68.1 65.4 55.3 39.3 55.0 41.0 51.8 50.9 59.8
DUA 67.6 68.5 69.0 70.7 78.6 66.4 65.3 66.9 70.6 54.3 37.4 61.8 46.5 47.6 48.2 61.3

Level 2

Source 63.6 67.8 74.6 59.4 65.4 57.7 65.2 77.5 67.0 56.3 36.4 51.5 60.9 43.3 46.3 59.5
NORM 50.7 61.2 65.2 61.3 54.4 46.4 55.8 69.1 58.0 45.6 36.1 40.3 64.1 41.3 40.6 52.7
DUA 56.4 58.0 62.0 56.5 62.0 53.1 58.0 69.9 63.0 49.3 35.8 50.5 56.6 40.6 45.3 54.5

Level 1

Source 50.5 53.1 61.9 51.3 52.4 45.2 55.9 55.5 49.7 49.0 34.2 44.0 40.4 41.3 42.6 48.5
NORM 47.0 48.4 54.1 50.2 47.8 39.5 50.3 47.7 44.1 41.1 38.4 36.6 42.0 37.0 43.2 44.5
DUA 45.7 49.0 54.7 50.6 49.8 43.4 50.1 51.7 46.9 45.8 31.8 43.3 38.9 39.1 41.5 45.5

Table 7. Error (%) for each corruption in ImageNet-C severity (Level 1–4) is reported. Source refers to results obtained from a model
pre-trained on ImageNet and tested on corrupted test sets. All results are obtained by using ResNet-18 as the backbone architecture. Lowest
error is highlighted for each corruption.

Car Ped Cyclist

SO 75.3 48.3 50.1
DUA 77.2 49.9 51.6

FS 86.9 55.7 63.2

(a) SODA10M [4] (Day → Night)

Car Ped Cyclist

SO 43.6 13.9 18.9
DUA 49.4 17.2 23.1

FS 84.8 46.1 61.2

(b) KITTI [2] → SODA10M

Car Ped Cyclist

SO 80.1 55.5 33.9
DUA 81.3 56.3 35.1

FS 91.8 71.3 76.5

(c) SODA10M → KITTI

Table 8. Domain adaptation results (mAP@50) for object detection with YOLOv3. a) We train on the SODA10M day split and test on the
SODA10M night split. b) We train on the KITTI train split and test on the SODA10M test split. c) We train on the SODA10M day split
and test on the KITTI validation split (details in Table 1). SO: source-only, FS: fully supervised.

Car Pedestrian Cyclist

40m fog visibility

Source only 39.6 39.3 20.2
DUA 61.3 53.5 39.9

Fully Supervised 77.8 68.1 70.5

50m fog visibility

Source only 48.2 45.9 27.3
DUA 69.6 59.7 48.4

Fully Supervised 82.2 71.3 74.2

(a) KITTI → KITTI-Fog [3]

Car Pedestrian Cyclist

100 mm/hr rain

Source only 93.2 80.5 81.1
DUA 94.9 81.7 83.2

Fully Supervised 95.4 83.2 84.1

75 mm/hr rain

Source only 95.5 82.6 83.6
DUA 96.1 83.2 86.0

Fully Supervised 96.6 84.1 87.2

(b) KITTI → KITTI-Rain [3]

Table 9. Results for KITTI pretrained YOLOv3 tested on rain and fog datasets. Mean Average Precision (mAP@50) is reported for the
three common classes in KITTI dataset. a) Results for 40m and 50m visibility in fog. b) Results for 100mm/hr and 75mm/hr rain intensity.


