
Supplementary: A Comprehensive Study of Image Classification Model
Sensitivity to Foregrounds, Backgrounds, and Visual Attributes

1. Additional Details on RIVAL10

We present a full breakdown of the RIVAL10 dataset in
this section. RIVAL10 consists of ImageNet-1k samples or-
ganized into the classes of CIFAR10. Each RIVAL10 class
is comprised of the training and validation samples drawn
from two ImageNet-1k classes. In table 1, we present the
ten classes of RIVAL10, along with the two corresponding
ImageNet-1k classes per class.

In Figures 15 and 16, we present representative exam-
ples drawn at random from the dataset, along with localized
attribution. Every sample has a class label and complete bi-
nary labels for 18 attributes. That is, all positive instances
of attributes are marked. This differs from the partial-label
setting which is common in attribute learning. Further, for
every positive instance of an attribute, a segmentation mask
is provided, as well as a segmentation mask for the entire
object for every sample. The figures show the object mask
and two positive attribute masks per image via applying the
mask to the image; that is, taking the elementwise product
of the segmentation mask and the image, so to black out any
pixels outside of the segmentation mask.

We note that for the attributes metallic, hairy, wet, tall,
long, rectangular, and patterned, we use the entire-object
mask as the attribute segmentation, as these attributes per-
tain to the entire object. Segmentation masks can be lever-
aged to create many variants of RIVAL10. In Figure 1, we
display examples of challenging inputs yielded via attribute
removal and insertion.

2. Additional Details on Data Collection

Worker Pool: We selected workers from the US to pro-
mote English fluency, which is necessary for reading the in-
structions. We also selected workers who have completed
> 95% of their tasks to further promote successful task
completion.

Worker Payment: Each task of 20 images was esti-
mated to take 10 minutes. We set a rate of $1.50 per task,
which amounts to $9.00 / hour, which is 25% above the US
Federal Minimum Wage ($7.25) at time of this writing. In
the second phase of collection, workers were compensated
at a rate of $0.1 per segmentation. We estimate one segmen-

Figure 1. Examples of attribute-swapped inputs.

Figure 2. Histograms of Worker recall, precision, and accuracy
scores on the qualification exam.

Figure 3. Histograms of per-Worker recall and precision on ran-
domly placed attention checks during the main phase of data col-
lection.
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RIVAL10 Number of ImageNet-1k Classes comprising RIVAL10 Class Positive
Class Instances Class Name #1 WordNet ID #1 Class Name #2 WordNet ID #2 Attributions

Truck 2523 Moving Van n03796401 Semi n04467665 13577
Car 2665 Waggon n02814533 Convertible n03100240 9415

Plane 2655 Airliner n02690373 Military plane n04552348 15277
Ship 2660 Ocean liner n03673027 Container vessel n03095699 14122
Cat 2667 Persian cat n02123394 Egyptian cat n02124075 9309
Dog 2660 Labrador retriever n02099712 Golden retriever n02099601 11251

Equine 2663 Sorrel n02389026 Zebra n02391049 13343
Deer 2657 Gazelle n02423022 Impala n02422699 12274
Frog 2667 Tailed Frog n01644900 Tree-frog n01644373 5317
Bird 2667 Goldfinch n01531178 Housefinch n01532829 8822

Total: 26,484 instances (21, 178 train, 5, 308 validation) with 112,707 positive attributions (∼ 4.26 per image)

Table 1. Breakdown of RIVAL10 dataset. Corresponding ImageNet-1k classes listed.

tation to take 30-45 seconds on average, which amounts to
a wage of $9-12 an hour.

Qualification Exam: As discussed in the main text we
required workers to pass a qualification exam for access to
the main phase of data collection. The qualification exam
consisted of 20 images with ground-truth annotations which
we defined. Workers were asked to read the instructions
carefully and complete the exam. We then computed pre-
cision, recall, and accuracy metrics on these questions. A
total of 218 workers took the exam. All workers were paid
a $1.50 for the exam, regardless if they passed or not. We
report the distribution of worker scores in Figure 2.

We use these distributions to inform a chose of thresh-
old for passing the exam, where the two relevant decision
factors are (1) high bar for metrics to promote annotation
quality (2) a large pool of workers for higher rate of data
collection. We note that since attributes are sparse, accuracy
is not a good metric for distinguishing worker performance.
This can be seen in the concentration of values in Figure
2 (right). We found that 90 workers scored greater than or
equal to 0.75 in precision and recall jointly, and decided
to use this as our threshold. Of the workers who completed
the qualifying exam, N = 39 contributed to the main phase.
The number of annotations completed by each worker var-
ied (min: 20, max: 1000).

Attention Checks: We additionally measure worker per-
formance during the main phase of data collection through
attention checks. Overall, 4% of samples to annotate had
ground truth annotations completed by the authors. This al-
lows us to estimate worker quality during the main phase,
and ensure that worker attention is maintained. The ground
truths for these attention checks were collected from a pool
of trusted CS graduate students.

Overall metrics on these attention checks were similar to
threshold set for the qualification exam: the average preci-

sion and recall across workers were 0.81 and 0.84 respec-
tively. We report these per-worker metrics in Figure 3.

Collection of Segmentations: In a second pass, workers
submitted segmentation masks for any attribute positively
annotated previously. Workers had access to many tools
to complete segmentations, including zooming, a polygon
tool, and a brush. Detailed example segmentations were
provided per attribute. Figure 27 shows a screen shot of
the segmentation platform. A similar qualification check
was administered before the second phase of data collec-
tion, with a minimum average IOU of 0.7 required on at
least five segmentations. Also, an average IOU of 0.745
was achieved on attention checks.

Screenshots of Instructions Given to Workers: We
show screenshots of the instructions, consent form, exam-
ples, and annotation form in Figures 23, 24, 25, and 26 re-
spectively. We have redacted identifying information of the
authors appropriately.

3. Model Details
Our experiments included a diverse set of model archi-

tectures and training paradigms. A primary challenge of
our work was facilitating fair comparisons across models
that operate very differently from one another at train and
test time. In this section, we provide greater discussion on
the differences among the models and their affect on our
analysis.

3.1. Architectures and Training Procedures

Architecturally, we focus on ResNets [5] and Transform-
ers [2]. Both architectures are deep, consisting of many
layers, though the nature of layers are markedly different.
ResNets rely on convolutions, which introduce the spatial
inductive biases such as translational invariance. Trans-
formers, on the other hand, view an image as a collection of



Model Pretraining Parameter RIVAL10 Source of Original NotesSet Count Accuracy Weights Paper

ResNet18

IN-1k

11.4M 95.48

[7] [5]ResNet50 23.9M 99.10
ResNet101 42.8M 99.21
ResNet152 58.5M 99.43

Robust ResNet18

IN-1k

11.4M 91.80

[3] [6]

ℓ2-PGD, ϵ = 3.0
Robust ResNet50 23.9M 93.82 ℓ2-PGD, ϵ = 3.0
Robust ResNet18† 11.4M 93.69 ℓ2-PGD, ϵ = 1.0
Robust ResNet50† 23.9M 97.29 ℓ2-PGD, ϵ = 1.0

SimCLR IN-1k 23.9M 93.87 [4] [1] RN50 backbone
CLIP ResNet50

YFCC100M

23.9M 96.34

[8] [8]CLIP ResNet101 42.8M 96.27
CLIP ViT-B/16 86M 99.17 Patch=16× 16
CLIP ViT-B/32 87M 98.44 Patch=32× 32

ViT (Tiny)

IN-21k + IN-1k

5M 94.82

[12] [2]

Patch=16× 16
ViT (Small) 22M 98.96 Patch=16× 16
ViT (Base) 86M 99.64 Patch=16× 16

ViT (Small)† 23M 97.86 Patch=32× 32
ViT (Base)† 87M 99.26 Patch=32× 32
DeiT (Tiny)

IN-1k
5M 96.42

[12] [11]
Patch=16× 16

DeiT (Small) 22M 99.30 Patch=16× 16
DeiT (Base) 86M 99.74 Patch=16× 16

Table 2. Details on all models analyzed. † denotes models that were only considered in specific ablations (i.e. not present in main figures).
IN refers to ImageNet.

patches, an apply attention layers to allow distant patches to
effect one another. Thus, images are processed significantly
differently across the two architectures. However, seeing as
both architectures are used in image classification, compar-
isons are warranted and necessary. Other works also com-
pare transformers and ResNets, as mentioned in the main
text.

Among training procedures, most models seek to min-
imize cross entropy loss, using single class-label supervi-
sion on clean training samples. Robust ResNets instead un-
dergo adversarial training [6], which replaces clean training
samples with adversarially attacked ones. These models are
then robust in the sense that they admit far fewer adversarial
examples, where imperceptible perturbations cause models
with high clean accuracy to badly misclassify attacked in-
puts.

We also consider contrastively trained models, which
differ dramatically in that they do no use class-labels during
training. The contrastive loss refers to training encoders to
draw representations of similar inputs close to one another,
while simultaneously pushing representations of different
inputs apart. In SimCLR [1], two views of a single input are
created via data augmentation. In CLIP [8], the representa-
tion of an image is contrastively drawn to the representation
of a corresponding text caption, obtained using two separate

encoders (image and text) that share a latent space, remark-
ably extending contrastive learning to multiple encoders op-
erating on different mediums. Notice that neither SimCLR
nor CLIP has the exclusive objective of image classifica-
tion, like the other supervised models we study. Instead,
they seek to learn informative representations, which can
then be used for a variety of downstream tasks. However,
object recognition is one of the main downstream task con-
sidered, and it is by no means abnormal to finetune SimCLR
or CLIP encoders to perform image classification. We note
that CLIP models have also been shown to have impressive
zero-shot classification abilities. We leave investigation of
CLIP’s zero-shot classification to future work.

3.2. A Single Test Environment

Given that models differ in their training algorithms and
settings, we seek to create a single testing environment that
preserves feature spaces learned in pretraining. Simply,
we isolate feature extractors, usually by removing the fi-
nal classifying layer (if present). We then fit a linear layer
atop the fixed features via supervised training on RIVAL10.
Specifically, we use an Adam optimizer with learning rate
of 1e−4, betas of 0.9, 0.999, and weight decay of 1e−5, for
ten epochs. When finetuning on background ablated im-
ages, we allow for an additional ten epochs. As seen in



table 2, all models achieve over 90% test accuracy using
our simple finetuning process. We do not wish to com-
pare model accuracies, though we argue that high accura-
cies across the board show that no model is significantly
disadvantaged with respect to its classification ability.

3.3. Other Factors of Variation

Differences in network size and pretraining set, listed in
table 2, are two other significant factors of variation across
the models we compare. Most models only use ImageNet-
1k as the pretraining set. ViTs and CLIP models use larger
datasets. While this is not ideal, differences are unavoid-
able in any comparison, and we argue that the pretraining
sets fundamentally inform the models themselves, similar
to how architecture and training procedure do. In the case
of ViTs, we also consider DeiTs, which are only trained on
Imagenet-1k, allowing for direct inspection of the effect of
the larger pretraining set on transformer behavior.

As for varying network sizes, we take multiple measures
to paint a full picture. First, we take models of varying size
within each category of interest. We find that across model
types, larger networks achieve higher accuracies for clean
and noisy samples. Our primary metric (RFS), however,
normalizes for general noise robustness. Secondly, for all
model types aside form CLIP ViTs, we include an instance
with roughly 23M parameters. When only comparing these
models, the same trends emerge.

4. RFS and other Normalizations

We propose relative foreground sensitivity (RFS) as a
normalized measure to directly compare the sensitivities of
models with varying general noise robustness. In this sec-
tion, we expand on the derivation of RFS, and present re-
sults using L2 normalized noise.

4.1. Geometric Derivation of RFS

Recall that the founding logic of our sensitivity analy-
sis is that a model’s sensitivity to a region can be measured
by the degradation in performance due to noise corruption
of that region. However, models with greater general ro-
bustness to noise will see lesser degradation due to noise in
either region. Similarly, models with low noise robustness
may see severe degradation due to noise in both regions.
RFS is designed to normalize against variance in general
noise robustness, yielding a single measure to compare var-
ious models across.

In figure 4 (left), we consider a point with accuracies
afg, abg under foreground and background noise respec-
tively. Further, we assume a = 1/2(afg + abg) ≤ 0.5
and afg < abg . Now, the distance from (afg, abg) to the
diagonal (dashed green) is equal to the distance to (a, a),

which amounts to

Distance to Diagonal =
√
2(a− afg) =

√
2(abg − afg)

2

The maximum distance from the diagonal for a point with
general noise robustness a then corresponds to the length
of the green segment (solid and dashed). Here, the limiting
factor is that afg ≥ 0. This distance is

Max Distance to Diagonal =
√
2(afg + abg − a) =

√
2a

Thus, RFS =
√
2/2(abg−afg)√

2a
=

abg−afg

2a when a ≤ 0.5.

Now, we consider a point (a′fg, a
′
bg) with a′ =

1/2(a′fg+a′bg) > 0.5. The distance to the diagonal (dashed
blue) is identical to the first case. Here, the maximum dis-
tance from the diagonal (full blue segment) is limited by the
fact that a′bg ≤ 1. This yields

Max Distance to Diagonal =
√
2(1− a′)

leading to a final RFS of
a′
bg−a′

fg

2(1−a′)
when a′ > 0.5. Com-

bining these cases gives the general formula for RFS.

RFS =
abg − afg

2min(a, 1− a)

Intuitively, RFS measures the gap in accuracy under
background and foreground noise under a normalization.
The normalization is designed to account for the fact that
models with very high or very low noise robustness will be
limited in the maximum gap attainable. In Figure 4, we
visualize both general noise robustness and RFS for all
accuracies under foreground and background noise to add
further context.

4.2. Results under L2 Normalization of Noise

We now reproduce the major figures from our noise anal-
ysis under L2 normalized noise. We consider eight equally
spaced noise levels, with L2 norms ranging from 25 to 200.
We find that the trends are near identical. The one small dif-
ference is that the class distinctions in Figure 7 are slightly
less severe. In particular, for DeiTs, the distribution of
iRFS scores on birds is roughly the same as that on ships.
Recall that applying equal L∞ noise to two regions will in-
cur a greater perturbation to the larger region when measur-
ing under the L2 norm. Thus, L∞ noise could introduce
a bias where larger regions are corrupted more. The direc-
tion of this bias is unclear though, as relative sizes of fore-
grounds and backgrounds vary. Our corroborated results
under L2 normalized noise suggest that the aforementioned
bias has little effect on our conclusions.



Figure 4. (Left) We demonstrate how RFS is derived as a ratio of the distance of (afg, abg) from the diagonal over the maximum distance
to the diagonal for a point with fixed noise robustness a = 1/2(afg + abg). (Right) Visualization of general noise robustness and relative
foreground sensitivity for all points in the unit square. Moving along the main diagonal increases general noise robustness, and moving
away (above) increases relative foreground sensitivity.

Figure 5. Accuracy under L2 normalized noise averaged over mul-
tiple noise levels. Marker size is proportional to parameter count.
Models with higher relative foreground sensitivity lie further from
the diagonal.

5. Saliency Alignment
To complement the noise analysis, we inspected saliency

maps obtained via GradCAM [9], which assigns a saliency
score of 0 to 1 to each pixel. RIVAL10’s segmentation
masks allow for quantative assessment of the alignment of
saliency to foregrounds. We inspected five metrics, de-
fined as follows for a true binary object segmentation mask
m ∈ {0, 1}d and a saliency map of equal shape s ∈ [0, 1]d.
Let sτ ∈ {0, 1}d be a binarized version of the saliency map,
where a pixel of sτ is 1 only when its corresponding value
in s is at least τ . A standard metric in comparing segmenta-
tions is intersection over union (IOU), defined below.

IOU =

∑
(m⊙ sτ=0.5)∑

(m) +
∑

(sτ=0.5)

Here, we assess the quality of the binarized saliency map as
a segmentation mask of the foreground. We also found that
inspecting the difference in average saliency for foreground
and background pixels were useful, particularly in automat-
ically discovering spurious background features. We define
this metric, called ∆ Densities, below.

∆ Densities =
(
∑

m⊙ s)/
∑

(m)

(
∑

(1−m)⊙ s)/
∑

(1−m)

A third measure views saliency alignment as a binary classi-
fication task. Specifically, we compute average precision of
a detector that uses pixel saliency as the discriminant score
for classifying each pixel as foreground or background. Av-
erage precision combines recall and precision at all thresh-
olds to give a general sense of discriminatory ability of
some criteria. Formally,

Average Precision =
∑
n

(Rn −Rn−1)Pn

where Rn, Pn refer to the precision and recall obtained at
the nth threshold. Finally, we consider two additional met-
rics are analogs to precision and recall. Precision and recall
typically hold meaning in binary classification tasks, though
in our case, we wish to assess the alignment of saliency
maps with continuous values (i.e. not true or false pre-
dictions). To this end, we define Saliency Precision and
Saliency Recall as follows.

Saliency Precision =

∑
s⊙m∑

s

Essentially, this amounts to a weighted precision, placing
more importance on having highly salient pixels fall in the



Figure 6. Accuracy under L2 normalized noise in foreground (left) and background (middle) at various noise levels. Models are grouped
by architecture and training procedure, with a curve corresponding to the average over all models in a group. (Right): RFS by group.

Figure 7. Relative foreground sensitivity per instance for four classes and five models of roughly equal size, computed using L2 normalized
noise corruption. (Top): Histogram of iRFS; positive denotes greater foreground sensitivity. (Bottom): Scatter; top left indicates high
relative foreground sensitivity. Class distinction is slightly less pronounced than with L∞ noise, but still substantial.

foreground. Another interpretation of this metric is the frac-
tion of total saliency in the foreground, similar to [10].

Saliency Recall =
∑

sτ=τ∗ ⊙m∑
m

For Saliency Recall, we compute recall as normal on a bi-
narized saliency map. However, the binarization threshold
τ∗ is chosen dynamically so to only retain the pixels that
account for 75% of total saliency. That is,

∑
sτ=τ∗∑

s = 0.75.
Intuitively, saliency recall captures the fraction of the seg-
mentation mask that are among the more salient pixels.

5.1. Empirical Observations

We present complete quantitative saliency alignment re-
sults in Figure 8. Generally, there is not a strong separation

among models observed across all metrics. CLIP ViTs con-
sistently score lower, with an average ∆ Densities near zero.
ViTs also generally have lower saliency alignment. Recall
that at low noise levels, the transformer models had low rel-
ative foreground sensitivity. One may be inclined to argue
that the saliency alignment analysis corroborates those re-
sults. However, we hesitate to make such assertions, as the
results are not consistent across metrics, and key exceptions
(such as the high alignment of DeiTs and Robust ResNets)
exist. Our overall impression from the saliency analysis is
that alignment GradCAMs to foregrounds may not always
imply high relative sensitivity to foreground noise, suggest-
ing that saliency maps alone may not capture the full story
of a model’s sensitivities.

Qualitatively, the GradCAMs for all transformers are
much more patchy than ResNets, which usually yield Grad-



Figure 8. Saliency alignment averaged over model categories (top) and object classes (bottom) for five alignment metrics.

Figure 9. Degradation to model performance due to attribute abla-
tion (via graying), as measured by accuracy.

CAMs with saliency organized in one or two clusters. We
attribute this to the fundamental difference in how images
are processed by ResNets, who employ significant spatial
inductive biases, and transformers, who view images a set
of patches that can attend to one another.

Looking to object classes, we see that the variance in
alignment due to class observed for IOU is corroborated by
average precision and saliency precision. When inspecting
saliency recall, however, we see higher alignments for birds
and ships. We believe this is an effect of the bias of Saliency
Recall in favor of images with smaller foreground masks.
Furthermore, high recall can still be consistent with poor
foreground sensitivity, as the saliency map may cover much
of both the foreground and background.

6. Attribute Ablation

To assess sensitivity to attributes, we inspect the extreme
of ablating the attributes entirely via graying. We do not
consider attributes that cover the entire object, as ablating
the attribute would remove the entire foreground. Overall,
the removal of any individual attribute only slightly reduces
model performance. The largest reduction occurs in CLIP
ResNets, with an average drop in accuracy of roughly 3.5%.
For most attribute-model pairs, accuracy drop is less than
1%. This suggests that attributes human deem informative
in performing RIVAL10 classification are not very impor-
tant to deep classifiers.

7. Additional Qualitative Examples of Back-
ground Sensitivity

We provide additional examples qualitatively demon-
strating instances where models have high background sen-
sitivity. Figure 10 shows GradCAMs where saliencies have
worst alignment with foreground, as measured by ∆ Den-
sities, for a Robust ResNet50. In Figure 11, we display in-
stances where noise corruption reveals greater background
sensitivity for Robust ResNet50 and DeiT (Small).

8. Additional Visualizations for Neural Node
Attribution

We show GradCAMs and IOU histograms for another
top feature attribute pair, cars and wheels, in Figure 12. We
observe qualitatively the same results as in the main text:
IOU scores are high for this attribute on samples in this
class. We also show scatterplots of IOUs vs. feature acti-
vations for this top pair as well as dogs and floppy-ears, the
pair discussed in the main text, in Figures 13 and 14 respec-
tively. Interestingly, feature activation value and saliency
alignment (as measured by IOU) do not seem to be strongly



Figure 10. Additional examples of spurious features used by a Robust ResNet50 observed via sorting images by saliency alignment (∆
Densities). Misclassifications are in red text. Spurious features include branches, dry leaves, water, and sky.

Figure 11. Additional examples where background noise degrades performance of highly accurate models more than foreground noise.
(top): Robust ResNet50, (bottom): DeiT (Small). Gaussian ℓ∞ noise with standard deviation σ = 0.12 shown. Probabilities are averaged
over ten trials.

related.

9. Attribute-specific Neural Node Attribution
We report a variant of the neural node attribution sec-

tion in the main text, where we do not filter by class. In-
stead, we focus the analysis on attributes. We use the same
procedure to identify top feature attribute pairs as in the
main text, except for filtering by class. We show the com-
plete saliency results for top feature attribute pairs for all
attributes in Figures 17, 18, 19, 20. In addition, we show
activation histograms for top feature attribute pairs identi-
fied by the method, colored them by the presence or not
of the attribute in Figures 21 and 22. We observe that the
feature distributions do not separate for test samples with
and without that attribute, despite the reasonable quality of

the GradCAMs. Note that we present GradCAMs on the
top activating test images. The GradCAMs for top activat-
ing training images are even better, though this by design,
as we choose feature-attribute pairs to maximize saliency
alignment in training images.

This implies that filtering by class is necessary for the
node attribution methods here discussed. When the same
analysis is carried out irrespective of class, nodes cannot
clearly be attributed. This result casts doubt on performing
node attribution in class-free fashion via saliency methods,
though some authors argue that filtering by class reflects the
actual practice of node attribution via saliency methods.



attribute=wheels, feature=542
 avg-iou=0.60
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Figure 12. (Top): Example GradCAMs on test images with re-
spect to the top feature identified by IOU in training set. (Bottom):
Histograms of IOUs corresponding to this feature, attribute pair.
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Figure 13. Feature values vs IOU scores for class-attribute pair car
and wheels.

10. Limitations

The central challenge of our work is performing com-
parisons across diverse model types. In particular, the vari-
ance in general noise robustness poses as a major obstacle
in employing our noise analysis. We believe that we have
devised a normalization scheme to account for this, though
there are likely other differences across models that could
not be completely controlled against.

Moreover, our study only considers classification on ten
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Test Sample Feature Values vs. IOUs
 Class=dog, Attribute=floppy-ears, Feature=1448

Figure 14. Feature values vs IOU scores for class-attribute pair
dog and floppy-ears.

relatively disparate classes. It is possible that as the clas-
sification task becomes more challenging, models rely less
on short cuts out of necessity. However, it is also plausible
that they make greater use of spurious features, as they seek
any information that will help. Frankly, our study can not
directly anticipate the outcome of repeating our analysis for
a more difficult classification task. In future work, we may
build on RIVAL10 to craft more finegrained classification
tasks, perhaps leveraging attribute insertion and removal.

Lastly, we focus on only one saliency method throughout
our analysis. It is possible that other saliency methods may
produce maps that were more informative, or more in line
with the results of our noise analysis. We chose GradCAM
because of its popularity and did not include others because
the saliency analysis was not the central focus of our work.

11. Statement of Potential Harms

All AI technology has the potential to cause harm to
others and this work is no exception. Our work targets
improved robustness and interpretability of deep models,
which authors believe may help reduce harm by permitting
transparent explanation of model decisions.

12. Code and Dataset License

We plan to release our code and data under the MIT li-
cense to facilitate open and collaborative research. We have
attached a zip file with the code to this submission.



13. Statement of Offensive Content and Per-
sonally Identification Information (PII)

We declare that our dataset has minimal risk of offen-
sive content. The classes we choose for this dataset (e.g.
airplane, car, truck..) are generally of a benign and non-
offensive nature.

The images in our dataset were sourced from ImageNet.
Therefore our dataset carries the same risks of PII as those
in ImageNet, albeit restricted to the classes considered. For
instance, although each selected class is not human-related,
some images nevertheless contain images of humans. We
could not verify that consent of these individuals to have
their picture contained in a computer vision database. In
future versions of the data, we plan to remove these images
with face detectors.

No PII associated to Workers will be released.



Figure 15. RIVAL10 examples. Left column has original image. Next column shows object mask applied onto the original image. The
following two columns show attribute masks applied onto the original image.



Figure 16. RIVAL10 examples. Left column has original image. Next column shows object mask applied onto the original image. The
following two columns show attribute masks applied onto the original image.



Figure 17. Saliency for top feature attribute pairs by IOU. First quarter of results shown here.



Figure 18. Saliency for top feature attribute pairs by IOU. Second quarter of results shown here.



Figure 19. Saliency for top feature attribute pairs by IOU. Third quarter of results shown here.



Figure 20. Saliency for top feature attribute pairs by IOU. Fourth quarter of results shown here.
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Figure 21. Top feature histograms for the top attribute feature pairs. First half shown here.
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Figure 22. Top feature histograms for the top attribute feature pairs. Second half shown here.



Figure 23. Screenshot of instructions page shown to workers

Figure 24. Screenshot of consent page shown to workers

Figure 25. Screenshot of examples page shown to workers

Figure 26. Screenshot of annotation form shown to workers



Figure 27. Screenshot of annotation form and tools for completing segmentations.
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Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. CoRR,
abs/2103.00020, 2021.

[9] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna
Vedantam, Michael Cogswell, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Why did you say that? visual explanations
from deep networks via gradient-based localization. CoRR,
abs/1610.02391, 2016.

[10] Kamil Szyc, Tomasz Walkowiak, and Henryk Maciejewski.
Checking robustness of representations learned by deep neu-
ral networks. In Yuxiao Dong, Nicolas Kourtellis, Barbara
Hammer, and Jose A. Lozano, editors, Machine Learning
and Knowledge Discovery in Databases. Applied Data Sci-
ence Track, pages 399–414, Cham, 2021. Springer Interna-
tional Publishing.

[11] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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