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Simplicity Convexity

Inmodal Amodal Inmodal Amodal

COCO-A [15] 0.746 0.856 0.658 0.685
KINS [10] 0.709 0.830 0.610 0.639
KITTI-360-APS 0.778 0.884 0.689 0.746
BDD100K-APS 0.697 0.821 0.594 0.618

Table 1. Comparison of shape statistics between inmodal and amodal
segments in our proposed KITTI-360-APS and BDD100K datasets, along
with COCO-A and KINS datasets.

In this supplementary material, we provide additional
details on various aspects of our work. We present dataset
statistics for our proposed amodal panoptic segmentation
datasets in Sec. 1. We then discuss the baseline architectures
and the inference in-depth in Sec. 2 and Sec. 3, respectively.
Subsequently, we provide details on the loss functions that
we employ to train the amodal instance segmentation head of
our APSNet in Sec. 4. Finally, we discuss the benchmarking
results on the KITTI-360-APS dataset in detail to reinforce
the utility of our proposed evaluation metrics in Sec. 5.

1. Dataset
In this section, we present statistics and examples for

each of the datasets that we introduce. To evaluate the shape
complexity of the amodal segments, we compute the shape
convexity and simplicity [15] for each dataset as follows:

convexity(S) =
Area(S))

Area(ConvexHull(S))
(1)

simplicity(S) =

√
4π ∗Area(S)

Perimeter(S)
(2)

Tab. 1 presents the shape complexity metric scores for
KITTI-360-APS and BDD-APS datasets. Additionally, we
compare the convexity and simplicity of our dataset with ex-
isting amodal instance segmentation datasets namely COCO-
A [15] and KINS [10].

1.1. KITTI-360-APS

The KITTI-360-APS dataset consists of 11 stuff classes
namely road, sidewalk, building, wall, fence, pole, traffic

sign, vegetation, terrain, and sky. The dataset further com-
prises 7 thing classes, namely car, pedestrians, cyclists, two-
wheeler, van, truck, and other vehicles. Tab. 2 presents the
thing class distribution for the dataset. We observe that the
instances of the car are predominant in thing classes fol-
lowed by pedestrian and truck classes. The contribution of
the Other-Vehicle class to the number of instances is the least
with 0.2%. Fig. 1 (a) illustrates the histogram of occlusion
level which is defined as the fraction of occluded region area.
We notice about 60% of the instances are either slightly oc-
cluded or not occluded at all in the dataset and the rest of the
instances have different degrees of occlusions. The second
peak in the graph is observed for near moderate occlusion
levels while heavily occluded regions are relatively small in
comparison. In terms of shape complexity (Tab. 1), KITTI-
360-APS consists of relatively simpler amodal segments in-
dicated by the higher the convexity-simplicity average value
which is in line with the intuition [15] that independent of
scene geometry and occlusion patterns, amodal segments
tend to be relatively simpler. Fig. 2 presents examples from
our dataset.

1.2. BDD100K-APS

The BDD100K-APS dataset provides amodal panoptic
annotations for 10 stuff classes and 6 thing classes. Road,
sidewalk, building, fence, pole, traffic sign, fence, terrain,
vegetation, and sky are the stuff classes. Whereas, pedestrian,
car, truck, rider, bicycle, and bus are the thing classes. In the
BDD100K-APS dataset, the number of instances of car and
pedestrian classes is relatively close and are the predominant
classes followed by the truck class. Bicycle and bus classes
have similar instance distributions whereas instances of rider
are the least with 1.1% of the total instances. Fig. 1 (b)
presents the occlusion level distribution of instances of this
dataset. About 54% of the instances in the dataset are not
occluded or are slightly occluded. The number of instances
having a higher degree of occlusion level approximately de-
creases with an increase in the occlusion level. In Tab. 2,
the convexity-simplicity average value for the amodal seg-
ments is lower for this dataset implying BDD100K-APS is
a more complex dataset due to the presence of a large num-
ber of non-rigid objects such as pedestrians. Fig. 2 depicts
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Class Car Pedestrian Cyclist Two-Wheelers Truck Van Other-Vehicles

Number 192624 6240 3096 2805 6561 3573 443
Ratio 89.4% 2.8% 1.4% 1.3% 3.0% 1.6% 0.2%

Table 2. Thing class distribution of KITTI-360-APS dataset.

Class Pedestrian Car Truck Rider Bicycle Bus

Number 19671 23775 2653 561 1110 1288
Ratio 40.1% 48.4% 5.4% 1.1% 2.3% 2.7%

Table 3. Thing class distribution of BDD100K-APS dataset.

(a) Occlusion level of KITTI-360-APS dataset.

(b) Occlusion level of BDD100K-APS dataset.

Figure 1. Illustration of occlusion level (defined as the fraction of region area
that is occluded) in KITTI-360-APS (a) and BDD100K-APS (b) datasets.

examples from this dataset.

2. Baseline Architectures
We introduce a total of six baselines for our proposed

amodal panoptic segmentation task. We create the base-
lines by building upon the EfficientPS [9] model which is
a state-of-the-art top-down panoptic segmentation network.
The EfficientPS architecture consists of four parts. The first
part is the shared backbone which is a combination of an
encoder and a feature pyramid network (FPN) variant. We
employ the EfficientNet-B5 [12] model as the encoder and
remove its squeeze and excitation [5] connections. We also
replace the batch normalization and activation layers with
synchronized Inplace Activated Batch Normalization (iABN
sync) [1] and Leaky ReLU activations respectively. The
backbone uses the 2-way FPN [9] on top of the encoder to
bidirectionally aggregate multi-scale features. The encoded
multi-scale features from the backbone are then propagated
to an instance and semantic head. The instance head is a
variant of Mask R-CNN [4] where the convolution opera-
tion in the mask prediction heads is replaced by depth-wise
separable convolutions. The semantic segmentation head in-
corporates various modules to focus on modeling of different
feature representations: DPC [2] for capturing long-range
contextual information, LSFE [9] for capturing characteris-
tic features, and MC [9] for aligning mismatched correction
modules. The final component of EfficientPS is an adaptive
fusion module that fuses the output of instance and semantic
head based on their logits.

In the baseline architectures, we keep all the components
of EfficientPS intact except for the instance segmentation
head which is replaced by different state-of-the-art amodal
instance segmentation heads namely, Amodal EfficientPS,
ORCNN [3], VQ-VAE [6], Shape Prior [13], ASN [10], and
BCNet [7]. In the following, we provide a brief overview of
the amodal instance segmentation heads of the baselines.

1. Amodal-EfficientPS is an extension of its inmodal
variant and relies implicitly on the network to learn
the relationship between the occluder and occludee
along with modeling the appropriate class-specific struc-
tures. Fig. 3 (a) presents the amodal instance head of
Amodal-EfficientPS.
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Figure 2. Visualization of amodal panoptic segmentation groundtruth from our proposed KITTI-360-APS (a-f) and BDD100K-APS (g-l) datasets. In (a) and
(f) the second car on the left, (e) the far away cars on the left are heavily occluded by other car instances and vegetation, respectively. Similarly, in (h) and (l)
the center cars occlude the car and the truck in front of them to a high degree, respectively. Moreover, we also observe a varying degree of occlusion from
partial to mid in all of the visualization examples. The variations in occlusion of instances, cluttered urban road scenes with several thing class instances, and
complex stuff classes makes both the proposed datasets extremely challenging for amodal panoptic segmentation.



(a) Amodal-EfficientPS (b) ORCNN

(c) ASN (d) Shape Prior

(e) VQ-VAE

(f) BCNet

Figure 3. Topologies of various amodal instance segmentation head of the amodal panoptic segmentation baselines. Please note that the boxes enclosed in
color dashes in each of the architecture corresponds to the expanded version of the same colored boxes depicted on the right.

2. ORCNN [3] employs an invisible mask prediction head
in addition to the inmodal and amodal mask prediction
heads, to explicitly learn the propagation from visible
mask to amodal mask. To do so, the approach designs
the invisible mask prediction by abstracting the amodal
mask from the visible mask. Fig. 3 (b) shows the amodal
instance head of ORCNN.

3. ASN [10] head emphasizes the importance of global
information in addition to visible cues for amodal mask
prediction. Fig. 3 (c) presents the ASN amodal instance
head. It consists of an additional occlusion classifi-
cation branch and uses the features from this branch
through a multi-level coding (MLC) block to impart the
learned global information to the individual inmodal
and amodal mask prediction head. The MLC block
essentially takes the concatenation of bounding box
features and occlusion features from their respective
classification branches, performs a series of transpose
convolution-convolution operations to process the col-
lective features, and then concatenates it with the model-

specific mask features. This is followed by another
series of convolution operations to generate the final
modal-specific mask predictions.

4. Shape Prior [13] approach strongly supports the idea
of using the visible region segmentation in conjunc-
tion with shape priors as the key to better amodal mask
segmentation. Fig. 3 (d) depicts the amodal instance
head of this approach. The aforementioned head em-
ploys two modal-specific fully convolutional network
heads with parameter sharing. The first modal-specific
heads give the initial mask predictions that are further
used as attention for refining the final mask predictions
with a feature matching loss and pre-trained shape prior
autoencoder. Additionally, the approach also incorpo-
rates the shape-prior autoencoder in the non-maximum
suppression step of the amodal bounding boxes [11].

5. VQ-VAE [6] seeks to incorporate shape prior informa-
tion through discrete shape codes while using Vector
Quantized Variational Autoencoder for mask segmen-
tation. Fig. 3 (e) shows the amodal instance head of



VQ-VAE.
6. BCNet [7] models occluder and occludee with a bi-

layer GCN layer. To be precise, the approach first
predicts the occluder mask and contour segmentation
and uses these occluder features in conjunction with
the ROI features to segment the occludee or the target
object in a class agnostic manner. Fig. 3 (f) presents the
amodal instance head of this approach. In contrast, our
APSNet employs FCN based class agnostic occluder
mask segmentation head to coarsely model the occlu-
sion regions of the target object as a strong prior and is
further refined in a spatially independent manner with
an occlusion mask segmentation head. Moreover, we
use additional processing blocks with spatio-channel
attention to explicitly model the underlying relation-
ship among occluder (general location and shape of the
occluded region), occludee (visible region), and the oc-
clusion (precise shape of the occluded region) features
before finally computing the amodal mask segmenta-
tion. Fig. 4 illustrates our fragmentation of the amodal
bounding box of a target object.

To summarize, for a better amodal perception perfor-
mance, an amodal instance head should have the ability to
decipher the existence of occlusion regions and be able to
reason about the shape given the visible region features. We
build our APSNet on these two core ideas.

3. Inference
At inference time, to obtain the amodal panoptic segmen-

tation output, we fuse the amodal instance segmentation and
the semantic segmentation predictions. There are several
fusion heuristics [8,9,14] that have been proposed for panop-
tic segmentation. We adapt the panoptic fusion proposed
in [9] due to its superior performance over other fusion
approaches. This heuristic allows adaptive fusion of the
task-specific head outputs, which can alleviate the inherent
overlap problem between the outputs of the different heads.
The semantic head generates semantic logits of |Cs|+ |Ct|
channels where Cs and Ct are the set of stuff and thing se-
mantic classes. While the amodal instance head outputs a
set of object instances consisting of a class prediction score,
confidence score, amodal bounding box prediction, inmodal,
and amodal mask logits. To apply the panoptic fusion, we
need to compute two logits MLA and MLB . We begin with
the computation of logit MLA where we apply confidence
thresholding to reduce the number of instances followed by
the ROI sampling operation for the amodal bounding box
on the two model-specific logits to increase their resolution
from 28× 28 to the input image resolution H ×W . Here,
H and W are the height and width of the input image. Sub-
sequently, we compute the inmodal bounding box from the
inmodal mask derived from the inmodal mask logits. We

then sort the class prediction, the modal-specific logits, and
the inmodal bounding box according to the class confidence
score. We then employ overlap thresholding using the in-
modal mask logits to finally yield the mask logit MLA.

We compute the second mask logit MLB for the corre-
sponding instances of objects from the semantic head logits
by selecting the channel based on the class of the instance
and zero-out the logits for that channel outside the inmodel
bounding box. Lastly, we fuse the two logits MLA and
MLB as

FL = (σ(MLA) + σ(MLB))⊙ (MLA +MLB), (3)

where σ(·) is the sigmoid function and ⊙ is the Hadamard
product.

We then concatenate the stuff logits from the semantic
head logits with FL. Subsequently, we apply softmax and
the argmax operation along the channel dimension to ob-
tain the so-called intermediate prediction (IP ). In the final
step, we zero out the stuff classes class labels and copy the
semantic head prediction stuff labels to the zero places in
IP . We obtain the amodal mask for each instance in IP by
accessing the amodal mask logits channels according to the
instance ID. We then compute the sigmoid of the selected
amodal mask logits and threshold it at 0.5 to obtain the final
amodal binary mask. Following, we set the pixels in the
amodal binary mask to 2 that does not overlap with the cor-
responding instance ID mask in IP to represent its occluded
regions. The set of this tensor along with its class prediction
and instance ID is concatenated with IP to yield the final
amodal panoptic prediction.

4. Amodal Instance Head
To recapitulate, our proposed amodal segmentation head

aims to impart the awareness of the presence of occlusion
regions with coarse localization (occluder head) and learn to
perceive the occlusion shape given the visible and occluder
regions. It also models the necessary interconnecting fea-
tures of occlusion, occluder, and visible regions (processing
block with spatio-channel attention) to be able to predict the
amodal mask. Additionally, it uses the computed amodal
features to further refine the inmodal mask prediction. Fur-
ther, to efficiently train the occlusion mask head with dense
feedback, our APSNet opts to learn spatially independent
occlusion masks. Fig. 5 presents examples of the spatially
dependent and independent occlusion groundtruth masks.

The amodal instance segmentation head of APSNet con-
sists of object classification, bounding box regression, and
various mask heads. The training loss for bounding box
object classification head Lcls and the bounding box regres-
sion head Lbbx is the same as defined in [9]. Similarly,
the visible mask head loss Lv

mask, occluder mask head loss
Lod
mask, occlusion mask head loss Lol

mask, amodal mask head



Figure 4. Illustration of our fragmentation of bounding box of the target object into class-agnostic occluder, class-wise occlusion, and visible masks. Our
amodal instance head employs individual mask heads to predict each mask. The features from these mask heads are further processed with a series of
convolution operations along with spatio-channel attention to predict the amodal mask of the target object.

loss Lam
mask and inmodal mask head loss Linm

mask are akin to
Lmask in [9] given as

Lmask(Θ) = − 1

|Kp|
∑

(P,P ′)∈Kp

Lp(P, P
′), (4)

where Lp(P, P
′) is the binary cross-entropy loss, P is the

ground truth binary mask, P ′ is the predicted binary mask
and Kp is the set of positive matches.

Thus the overall loss for our proposed amodal instance
segmentation head is as

Lainst = Lcls + Lbbxam + Lbbx + Lv
mask +

Lod
mask + Lol

mask + Lam
mask + Linm

mask.
(5)

Note that the gradient from the loss Lainst does not flow
through the RPN.

5. Extended Benchmarking Results
In this section, we discuss the benchmarking results on

the KITTI-360-APS validation set in detail to understand
the mutual relationship between the two proposed metrics
clearly. Tab. 4 presents the quantitative results using the
APQ and APC metrics and all their components. The APS
baseline with the trivial implementation of amodal instance
head, Amodal-EfficientPS achieves the lowest APQ and APC
scores. Similarly, ORCNN that employs a derivative head for
occlusion mask prediction over the trivial amodal instance
head attains similar performance to Amodal-EfficientPS.
However, this similar overall performance of the two net-
works stems from varying effectiveness of segmenting the
visible and invisible regions rather than being the same. APS-
EfficientPS has higher APQV

T and APCV
T scores implying

better visible thing region parsing, whereas ORCNN has
higher APQO

T and APCO
T values, indicating better occluded

thing region parsing. Following, BCNet performs better than
Amodal-EfficientPS and ORCNN, lagging behind VQ-VAE
by 0.1% in both APQ and APC scores. However, BCNet
achieves an improvement of 1.9% in APQO

T and 1.2% in
APCO

T scores. This difference in the proportional improve-
ment in the two metrics where the increase in performance
is higher for APQO

T signifies that BCNet primarily improves
the segmentation of partially occluded objects with smaller
occlusion regions. When paired with the improvement in
APQV

T of 0.7% and APCV
T of 1.2% indicates that the ap-

proach improves the segmentation of nearby larger objects
that are partially occluded. We hypothesize that this is pri-
marily due to the bilayer modeling of occluder and occludee
which enables more refined target mask segmentation.

Subsequently, VQ-VAE adds an occlusion detection
branch and mask refinement with shape priors to incorpo-
rate amodal reasoning capabilities. Compared to the trivial
Amodal-EfficientPS, this approach achieves an improvement
of 0.7% in APQ and 0.4% in APC, where the improvement
in APQT and APCT component of the metrics is 1.5% and
1.2% respectively. Next, the Shape Prior model refines the
coarsely predicted mask with shape priors in addition but
uses a combination of a pre-trained autoencoder with K-
Means based codebook. It further incorporates a visible
mask refinement step with amodal features. This model has
an APQ score of 41.8% and an APC score of 58.2%. Its
APQO

T and APCO
T are higher than that of VQ-VAE by 0.6%

and 0.4% respectively. This improvement suggests that in-
corporating shape priors with an additional codebook yields
better performance. A similar trend is also observed for
visible thing region metrics indicating that refining visible
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Figure 5. Illustration of spatially dependent and independent occlusion masks. The spatially dependent occlusion mask consists of few pixels compared to the
inmodal mask for partial occlusion. On the other hand, the spatially independent occlusion masks that effectively capture the underlying shape of the occluded
regions are denser. Thus, enabling stronger feedback during training and consequently resulting in capturing the underlying shape of the occlusion mask
effectively.

APQ APC APQS APQT APQV
T APQO

T APCS APCT APCV
T APCO

T AP mIOU

Amodal-EfficientPS 41.1 57.6 46.2 33.1 41.3 12.7 58.1 56.6 58.5 22.7 29.1 44.7
ORCNN [3] 41.1 57.5 46.2 33.1 41.1 12.8 58.1 56.6 58.1 22.9 29.0 44.5
BCNet [7] 41.6 57.9 46.2 34.4 42.0 14.5 58.1 57.6 59.7 23.9 30.3 45.8
VQ-VAE [6] 41.7 58.0 46.2 34.6 42.2 14.7 58.1 57.8 59.8 23.9 30.4 45.9
Shape Prior [13] 41.8 58.2 46.2 35.0 42.5 15.3 58.1 58.2 60.3 24.3 31.0 46.3
ASN [10] 41.9 58.2 46.2 35.2 42.7 15.4 58.1 58.3 60.4 24.2 31.1 46.3

APSNet (Ours) 42.9 59.0 46.7 36.9 43.6 18.3 58.5 59.9 61.5 25.8 33.4 48.0

Table 4. Performance comparison of amodal panoptic segmentation on the KITTI-360-APS validation set. Subscripts S and T refer to stuff and thing classes
respectively. Subscripts S and T refer to stuff and thing classes respectively. Superscripts V and O refer to visible and occluded regions respectively. All
scores are in [%].

mask with amodal features helps improve the performance
further.

Nevertheless, our proposed approach performs the best
in all the metrics, namely APQ and APC, and their compo-
nents. Here, the proportional improvement of APSNet can
be observed in visible and occlusion components of APQT

(0.9% and 2.9%) and APCT (0.9% and 1.6%) compared to
the best baselines ASN. This demonstrates that our approach
improves the segmentation of partial-to-mid occluded ob-
jects, however, the performance is limited when it comes
to heavily occluded objects, as observed in the qualitative
evaluations in the manuscript. To conclude, computing both
the metrics for the amodal panoptic segmentation task gives
more insights into the performance of an approach, which
can be extremely valuable while developing an effective
solution for this problem.
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