
Appendices

A1. Related Works

A1.1. Neural Architecture Search

In early NAS, evolutionary algorithm (EA) [36,37] or re-
inforcement learning (RL) [4, 49, 50] were commonly-used
search algorithms. Although these early works were suc-
cessful in proving the potential of NAS, their immediate ap-
plication was challenging due to the enormous search cost,
easily mounting up to tens of thousands of GPU hours to
search for a single architecture. Most of the computational
overhead in early NAS algorithms occurred as the result of
having to train each candidate architecture to convergence
and evaluate it.

Through weight sharing [34], recent NAS works were
able to achieve a noticeable acceleration in the archi-
tecture search process. Weight sharing utilizes a super-
network, whose sub-networks correspond to candidate ar-
chitectures belonging in the pre-defined search space. The
sub-networks are evaluated with the weights inherited from
the super-network, and thus, the sub-networks end up shar-
ing a common set of weights. Modern NAS algorithms that
exploit such performance approximation techniques can be
categorized into differentiable NAS [9–11,13,14,24,28,43,
45,48], and one-shot NAS [5,7,17,33,46]; while the search
and evaluation processes are entangled in the former, the
latter disentangles them into separate processes.

Performance predictors [15], which take an encoded neu-
ral architecture as an input and output the accuracy of
the corresponding architecture, are another promising di-
rection for reducing the architecture evaluation cost. The
main challenge in performance prediction is minimizing
the number of architecture-accuracy pairs required to ob-
tain a performance predictor that generalizes well to the
rest of the search space. Because the problem of architec-
ture performance prediction is by definition a regression
task, [15, 25, 40] aimed to predict the exact value of accu-
racy by minimizing the mean squared error loss between the
predicted and true accuracy. Recently, the concept of archi-
tecture comparators [12, 42], is rising in popularity. Instead
of estimating the exact accuracy, comparators take two ar-
chitectures as an input and use a ranking loss or a contrastive
learning framework to predict which is more likely to rank
higher in terms of accuracy.

Apart from weight sharing and performance predictors,
there also exist works that aim to search for more general
proxy settings for architecture evaluation. EcoNAS [47] ex-
plores four common reduction factors - the number of chan-
nels, the resolution of input images, the number of training
epochs, and the sample ratio of the full training set - and de-
termine which one of these proxies can be used to reliably
estimate the final test accuracy. Na et al. [32] show that it is

possible to only use a subset of the target dataset for execute
NAS and propose a novel proxy dataset selection algorithm.

A1.2. NAS at initialization

Evaluating neural architectures without any amount of
training is surely an interesting and attractive research direc-
tion that has potential to NAS. Mellor et al. [30] use the fea-
ture separability in the linear regions of a neural architecture
as a metric to score architectures. Abdelfattah et al. [1] at-
tempt to identify which one of the pruning-at-initialization
techniques is most useful for NAS. Zen-NAS [26] analyzes
the activation patterns in a neural architecture to quantify
its expressivity. KNAS [41] and TE-NAS [8] have previ-
ously proposed to use the NTK framework to score neural
architectures and thus are most closely-related to this work.
As mentioned in the main paper, KNAS and TE-NAS use
the MEAN and the CN metrics, respectively. In addition to
CN, TE-NAS utilizes another at-initialization score, derived
from the number of linear regions in a neural architecture.

A1.3. Neural Tangent Kernel

The NTK framework is based on the observation that
for certain initialization schemes, the infinite width limit of
many neural architectures can be exactly characterized us-
ing kernel tools [22]. Provided that this assumption holds,
many of the questions in deep learning theory can be ad-
dressed through the study of linear methods and convex
analyses [38]. The intuitiveness of the NTK framework led
to important results regarding the generalization and op-
timization of deep neural networks [2, 6, 18, 23, 27, 51].
Such advances in the NTK framework subsequently led re-
searchers to study how the NTK can be leveraged in var-
ious applications: prediction of the generalization perfor-
mance and the training speed, explanation of inductive bi-
ases in deep neural networks, design of new classifiers, De-
spite these limitations, the intuitiveness of the NTK, which
allows to use a powerful set of theoretical tools to exploit
it, has led to a rapid increase in the amount of research that
successfully leverages the NTK in applications, such as pre-
dicting generalization [16] and training speed [44], explain-
ing certain inductive biases [31, 39] or designing new clas-
sifiers [3, 29]. Despite the proliferation of the NTK frame-
work in the deep learning theory, there still exist doubts on
whether the assumptions in the NTK framework truly holds
for deep neural networks that are used in real life [19, 20].

A2. Metrics Summary

In Table A1, we provide an overview of the NTK-based
metrics studied in the main paper, along with the direction
of their rank correlation with the final test accuracy of a
neural architecture.

Table A1. Overview of the NTK-based metrics studied in the main
paper. “Rank” refers to whether the metric should be positively
(+) or negatively (−) correlated with the final test accuracy.

Metric Equation Rank

F-Norm ||Θθt ||F +

Mean µ(Θθ0) +

NCN −(λmax(Θθ0
))

(λmin(Θθ0
)) +

LGA (Θθ0
−µ(Θθ0

))·(LY−µ(LY))

||Θθ0
−µ(Θθ0

)||2||LY−µ(LY)||2 +

Table A2. Summary of differences among different NDS search
spaces. “# Ops.” and “# nodes” correspond to the number of opea-
rations and the number of nodes in each cell. “Output” refers to
which node(s) are concatenated for the output (= A if all nodes are
are concatenate, = L if there are nodes that are not used as input to
other nodes). “# cells” refers to the number possible cells, without
considering the redundancy, that exist in each search space.

Benchmarks # Ops. # Nodes Output # Cells (B)

NASNet 13 5 L 71,465,842
Amoeba 8 5 L 556,628
PNAS 8 5 A 556,628
ENAS 5 5 L 5,063
DARTS 8 4 A 242

A3. NAS Benchmarks & Image Datasets
NAS-Bench-101 (cont’d from the main paper) Each convo-
lution operator in NAS-Bench-101 follows the Conv-BN-
ReLU pattern, and naı̈ve convolutions are used instead of
separable convolutions, such that the resulting architectures
closely match the designs of ResNet and Inception. Each
cell is stacked 3 times, followed by a max-pooling layer,
which halves the image height and width and doubles the
number of channels. In the resulting DNN, the above pat-
tern is repeated 3 times, and lastly, a glabal average pooling
and a final classification layer with the Softmax function are
inserted.
NAS-Bench-201 (cont’d from the main paper) The convo-
lution operator in NAS-Bench-201 follows the operation
sequence of ReLU-Conv-BN. The macro-architecture of
NAS-Bench-201 starts with one 3-by-3 convolution with 16
output channels and a batch normalization layer [21]. Each
cell is stacked 5 times, followed by a residual block. In the
final DNN, this pattern is repeated 3 times. The number of
output channels in the first, second, and third stages is set to
be 16, 32 and 64, respectively. The residual block serves to
downsample the spatial size and double the channels of an
input feature map. The shortcut path in this residual block
consists of a 2-by-2 average pooling layer with stride of 2

and a 1-by-1 convolution. Lastly, a global average pooling
and a final classification layer with the Softmax function are
inserted for classification.
NDS Benchmark [35] Please refer to Table A2 for the sum-
mary of differences among the search spaces in the NDS
benchmark [35]
Image Datasets Please refer to Table A4 for the summary
of image datasets utilized in NAS benchmarks.

A4. Experimental Details
Section 3.2 The NTK computation involves per-sample
gradients, which are computationally intractable to obtain
from high-dimensional datasets that contain tens of thou-
sands images. Therefore, in this paper, we instead use a
single minibatch, randomly sampled from the train set, to
compute the NTK. For CIFAR-10 and CIFAR-100 datasets,
a minibatch of size 256 is used, while for ImageNet16-120,
a minibatch of size 512 is used. For a fair comparison,
we use the same set of image samples to construct the
minibatch used for evaluation across all benchmarks. A
single NVIDIA V100 GPU is used for the experiments in
this section.
Sections 3.3. & 3.4 For rank correlation evaluation on
CIFAR-10 and CIFAR-100, we use a minibatch of size 256,
while for that on ImageNet16-120, we use a minibatch of
size 512. For NCN, we use the Eval mode BN on PyTorch,
and for F-Norm and Mean, we use the Train mode BN. The
choice of BN usage is set based on the results from Section
3.2; for all metrics, we choose the BN setting that yields the
highest rank correlation for each metric. A single NVIDIA
V100 GPU is used for the experiments in these sections.
Section 4.1 Measurements are done on NAS-Bench-201.
We use a single image sampled from the validation set and
Eval mode BN for NTK computation in this section. A
single NVIDIA V100 GPU is used for the experiments.
Section 4.3 To train candidate architectures, we use the
momentum SGD optimizer with a learning rate of 0.025,
momentum of 0.9, a weight decay factor of 3e-4. These
are standard settings used to train architectures in NAS
benchmarks. The train set of each dataset is used for
training, and a single minibatch from the validation set is
used to derive NTK-based metrics. A batch size of 1024 is
used to train architectures. For NTK computation, a batch
size of 256 is used for CIFAR-10 and CIFAR-100, and a
batch size of 512 is used for ImageNet16-120. A single
NVIDIA V100 GPU is used for the experiments in this
section. For F-Norm and Mean, we use the Train mode BN,
and for NCN and LGA, we use the Eval mode BN.
Section 5 We use the same experimental settings as those
used in Section 4.3 to train architectures and derive LGA3

and LGA5. A single NVIDIA A40 GPU is used to execute
both random and evolutionary search algorithms.

Table A3. CIFAR-10 Search results on additional search spaces.

Metric NB101 NDS-DARTS NDS-ENAS

F-Norm 89.17 91.83 85.19
Mean 88.05 88.40 91.14
NCN 90.81 91.99 92.52
LGA 92.57 93.61 93.26
Metric NDS-Amoeba NDS-NASNet NAS-Macro

F-Norm 91.35 84.71 87.12
Mean 90.89 89.89 87.25
NCN 89.14 87.21 90.62
LGA 94.35 94.30 92.24

A5. Full Benchmark Evaluation Results
In Figure A1, the rank correlation evaluation results of

existing at-initialization NTK-based metrics on all bench-
marks are visualized.

A6. Fine-grained Rank Correlation Evaluation
This experiment is repeated for 20 different runs, and

the evaluation results in box-and-whisker plots are pre-
sented in Figure A2, A3, and A4. P1 contains 100 architec-
tures sampled from Top-10% of architectures, whereas P10
contains the same number of architectures sampled from
Bottom-10% of architectures. Ticks on the x-axis corre-
spond to accuracy deciles in descending order (P1 → P10).
”Total” refers to the rank correlation evaluation results over
all 1,000 architectures.

A7. Search Results on Other Benchmarks
We conducted random search with 500 sampled architec-

tures with four compared metrics. Except for LGA, which
is obtained after 3 epochs, others are measured at initializa-
tion. The search results are presented in Table A3. LGA is
the only metric that searches for a successful architecture
across all search spaces.

A8. Pseudocode for Search Algorithms
The pseudocode for random search is presented in Algo-

rithm 1. In random search, N corresponds to the total num-
ber of candidate architectures evaluated during search. In
this work, we set N in random search to be 100. The pseu-
docode for evolutionary search is presented in Algorithm 2.
In evolutionary search, N corresponds to the number of ar-
chitectures kept in the parent pool (or population). In this
work, we set N in evolutionary search to be 10.

A9. Limitations & Societal Impact
Limitations: Even though we demonstrate that LGA ex-

hibits a high predictive performance with only few epochs

of training, extensive theoretical advances are required to
fundamentally address the unreliability of the NTK. To be-
come a truly reliable theoretical framework for architecture
selection, the NTK must be able to encompass diverse op-
erations, normalization types, and weight initializations.
Societal Impact: With the help of at-initialization metrics,
NAS was able to greatly reduce its environmental cost. Un-
fortunately, the need for training to stabilize the NTK will
inevitably increase the environmental cost of NAS.

Algorithm 1: Random Search
1 sampler = RandomSampler()
2 best arch, best LGA = None, 0
3 for i = 1 : N do
4 cand arch = sampler()
5 for Epoch = 1 : t do
6 Train(cand arch)
7 end for
8 LGAt = cand arch.LGA()
9 if LGAt > best LGA then

10 best arch, best LGA = cand arch, LGAt

11 end if
12 end for
13 chosen arch = best arch

Algorithm 2: Evolutionary Search

1 parent pool = []
2 lga hist = []
3 sampler = RandomSampler()
4 parent arch, child arch = None, None
5 for i = 1 : N do
6 cand arch = sampler()
7 parent pool.append(cand arch)
8 for Epoch = 1 : t do
9 Train(cand arch)

10 end for
11 lga hist.append(cand arch.LGA())
12 end for

13 while search budget not exceeded do
14 Based on lga hist, choose the architecture with the

highest LGAt from the parent pool as parent arch
15 child arch = Mutate(parent arch)
16 for Epoch = 1 : t do
17 Train(child arch)
18 end for
19 parent pool.popleft()
20 lga hist.popleft()
21 parent pool.append(child arch)
22 lga hist.append(child arch.LGA())

train evalBatch Norm.

(a) NB-101 (b) NB-201
(CIFAR10)

(c) NB-201
(CIFAR100)

(d) NB-201
(ImageNet)

(e) NDS-
DARTS

(f) NDS-
ENAS

(g) NDS-
NASNet

(h) NDS-
Amoeba

(i) NDS-
PNAS

F-Norm Mean NCN

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
an

k
co

rre
la

tio
n

train eval train eval train eval train eval train eval train eval train eval train eval

Figure A1. Rank correlation evaluation results on various NAS benchmarks. For F-Norm and Mean, the evaluation results based on the
Train mode BN are reported, whereas for NCN and LGA, those based on the Eval mode BN are reported. The scale and the range of y-axes
are set to be the same across all search spaces. NB is an abbreviation for NAS-Bench.

-0.6
Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(a) F-Norm
Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(b) Mean
-0.6

Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(c) NCN
-0.6

Figure A2. Rank correlation evaluation results on NAS-Bench-201 CIFAR-10 for every accuracy decile.

-0.6
Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(a) F-Norm
Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(b) Mean
-0.6

Total P1 P10

R
an

k
co

rre
la

tio
n

-0.4

-0.2

0.2

0.4

0.6

0

(c) NCN
-0.6

Figure A3. Rank correlation evaluation results on NAS-Bench-201 CIFAR-100 for every accuracy decile.

Total P1 P10

R
an

k
co

rre
la

tio
n

0

-0.6

-0.4

-0.2

0.2

0.4

0.6

(a) F-Norm
Total P1 P10

R
an

k
co

rre
la

tio
n

(b) Mean

R
an

k
co

rre
la

tio
n

Total P1 P10
(c) NCN

0

-0.6

-0.4

-0.2

0.2

0.4

0.6

0

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure A4. Rank correlation evaluation results on NAS-Bench-201 ImageNet-16-120 for every accuracy decile.

Table A4. Summary of image datasets used to construct NAS Benchmarks.

Dataset # of Train Data # of Validation Data # of Test Data # of Classes Image Size

CIFAR-10 50,000 - 10,000 10 (32× 32)

CIFAR-100 50,000 - 10,000 100 (32× 32)

ImageNet-16-120 151,700 3,000 3,000 120 (16× 16)

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas Donald Lane. Zero-cost proxies for
lightweight nas. In International Conference on Learning
Representations, 2020. 1

[2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Rus-
lan Salakhutdinov, and Ruosong Wang. On exact compu-
tation with an infinitely wide neural net. arXiv preprint
arXiv:1904.11955, 2019. 1

[3] Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdi-
nov, Ruosong Wang, and Dingli Yu. Harnessing the power
of infinitely wide deep nets on small-data tasks. In Interna-
tional Conference on Learning Representations, 2019. 1

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In International Conference on Learning
Representations, 2017. 1

[5] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc V. Le. Understanding and simplify-
ing one-shot architecture search. In Proceedings of the 35th
International Conference on Machine Learning, pages 550–
559, 2018. 1

[6] Alberto Bietti and Julien Mairal. On the inductive bias of
neural tangent kernels. Advances in Neural Information Pro-
cessing Systems, 32:12893–12904, 2019. 1

[7] Andrew Brock, Theo Lim, JM Ritchie, and Nick Weston.
Smash: One-shot model architecture search through hyper-
networks. In International Conference on Learning Repre-
sentations, 2018. 1

[8] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A theo-
retically inspired perspective. In International Conference
on Learning Representations, 2020. 1

[9] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. 2020. 1

[10] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. In International Conference on Learn-
ing Representations, 2020. 1

[11] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–
1303, 2019. 1

[12] Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng,
Yaowei Wang, and Mingkui Tan. Contrastive neural archi-
tecture search with neural architecture comparators. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9502–9511, 2021. 1

[13] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. Darts-: Robustly stepping out
of performance collapse without indicators. In International
Conference on Learning Representations, 2020. 1

[14] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair DARTS: Eliminating Unfair Advantages in Differen-
tiable Architecture Search. In European Conference On
Computer Vision, 2020. 1

[15] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Pre-
dicting network performance before training. arXiv preprint
arXiv:1712.03351, 2017. 1

[16] Aditya Deshpande, Alessandro Achille, Avinash Ravichan-
dran, Hao Li, Luca Zancato, Charless Fowlkes, Rahul
Bhotika, Stefano Soatto, and Pietro Perona. A linearized
framework and a new benchmark for model selection for
fine-tuning. arXiv preprint arXiv:2102.00084, 2021. 1

[17] Xuanyi Dong and Yi Yang. Searching for a robust neural ar-
chitecture in four gpu hours. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1761–1770, 2019. 1

[18] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai. Gradient descent finds global minima of deep neural
networks. In International Conference on Machine Learn-
ing, pages 1675–1685. PMLR, 2019. 1

[19] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul,
Sepideh Kharaghani, Daniel M Roy, and Surya Ganguli.
Deep learning versus kernel learning: an empirical study of
loss landscape geometry and the time evolution of the neural
tangent kernel. Advances in Neural Information Processing
Systems, 33, 2020. 1

[20] Micah Goldblum, Jonas Geiping, Avi Schwarzschild,
Michael Moeller, and Tom Goldstein. Truth or backpropa-
ganda? an empirical investigation of deep learning theory.
In International Conference on Learning Representations,
2019. 1

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 2

[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: convergence and generalization in neural
networks. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, pages
8580–8589, 2018. 1

[23] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman
Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. Advances in neural
information processing systems, 32:8572–8583, 2019. 1

[24] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1620–1630, 2020. 1

[25] Zhihang Li, Teng Xi, Jiankang Deng, Gang Zhang,
Shengzhao Wen, and Ran He. Gp-nas: Gaussian pro-
cess based neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11933–11942, 2020. 1

[26] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot
nas for high-performance image recognition. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 347–356, 2021. 1

[27] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the lin-
earity of large non-linear models: when and why the tangent
kernel is constant. Advances in Neural Information Process-
ing Systems, 33, 2020. 1

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1

[29] Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gor-
don Wilson, and Andreas Damianou. Fast adaptation with
linearized neural networks. In International Conference
on Artificial Intelligence and Statistics, pages 2737–2745.
PMLR, 2021. 1

[30] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley.
Neural architecture search without training. In International
Conference on Machine Learning, pages 7588–7598. PMLR,
2021. 1

[31] Hossein Mobahi, Mehrdad Farajtabar, and Peter L Bartlett.
Self-distillation amplifies regularization in hilbert space. vol-
ume 33, 2020. 1

[32] Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh
Yoon. Accelerating neural architecture search via proxy data.
In Proceedings of the 30th International Joint Conference on
Artificial Intelligence, 2021. 1

[33] Houwen Peng, Hao Du, Hongyuan Yu, QI LI, Jing Liao, and
Jianlong Fu. Cream of the crop: Distilling prioritized paths
for one-shot neural architecture search. Advances in Neural
Information Processing Systems, 33, 2020. 1

[34] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In Proceedings of the 35th International Conference
on Machine Learning, pages 4095–4104, 2018. 1

[35] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dollár. On network design spaces for visual recog-
nition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1882–1890, 2019. 2

[36] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4780–4789, 2019. 1

[37] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2902–2911. JMLR. org, 2017. 1

[38] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al.
Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press, 2002. 1

[39] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. volume 33, 2020. 1

[40] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin
Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-
supervised assessor of neural architectures. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1810–1819, 2020. 1

[41] Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu
Sun, and Hongxia Yang. Knas: Green neural architecture
search. In International Conference on Machine Learning,
pages 11613–11625. PMLR, 2021. 1

[42] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling
Jui, Chunjing Xu, and Chang Xu. Renas: Relativistic eval-
uation of neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4411–4420, 2021. 1

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations, 2019.
1

[44] Luca Zancato, Alessandro Achille, Avinash Ravichandran,
Rahul Bhotika, and Stefano Soatto. Predicting training time
without training. volume 33, 2020. 1

[45] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In Interna-
tional Conference on Learning Representations, 2019. 1

[46] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and
Steven Su. Overcoming multi-model forgetting in one-
shot nas with diversity maximization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7809–7818, 2020. 1

[47] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change
Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. Econas:
Finding proxies for economical neural architecture search.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11396–11404, 2020.
1

[48] Pan Zhou, Caiming Xiong, Richard Socher, and Steven Hoi.
Theory-inspired path-regularized differential network archi-
tecture search. In Neural Information Processing Systems,
2020. 1

[49] Barret Zoph and Quoc V. Le. Neural architecture search
with reinforcement learning. In International Conference on
Learning Representations, 2017. 1

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable im-
age recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 8697–
8710, 2018. 1

[51] Difan Zou and Quanquan Gu. An improved analysis of train-
ing over-parameterized deep neural networks. Advances in
neural information processing systems, 2019. 1

	. Related Works
	. Neural Architecture Search
	. NAS at initialization
	. Neural Tangent Kernel

	. Metrics Summary
	. NAS Benchmarks & Image Datasets
	. Experimental Details
	. Full Benchmark Evaluation Results
	. Fine-grained Rank Correlation Evaluation
	. Search Results on Other Benchmarks
	. Pseudocode for Search Algorithms
	. Limitations & Societal Impact

