
Supplement to Dancing under the stars: video denoising in starlight

Kristina Monakhova
UC Berkeley

Stephan R. Richter
Intel Labs

Laura Waller
UC Berkeley

Vladlen Koltun
Intel Labs

Abstract

In this document we include supplementary materials to
Dancing under the stars: video denoising in starlight. We
provide additional implementation details and visual results
on still images from our dataset.

1. Additional Implementation Details
1.1. Noise Generator and Discriminator

First, we provide additional details about the noise
generator and discriminator. In our noise generator, we
include a periodic noise component. This periodic noise
component is modeled as follows in the frequency domain
as:

n[M,N] = F−1


X1, if N = 0

X2 +X3j, N = Nt/4

X2 −X3j, N = 3Nt/4

0, otherwise

Where X1, X2, and X3 are zero mean Gaussian random
variables with optimized variances λf1, λf2, λf3, Nt is the
total number of columns in the image, and M,N index the
rows/columns of the image. This essentially corresponds to
adding a 1 or 2 pixel period sinusoidal pattern to the image
with a random amplitude that is determined by the optimized
variance parameter. We demonstrate the effect of this noise
in Figure 1, showing a central slice of the Fourier transform
of the clean vs. noisy images. We can see that our full model
better matches the real noise than our partial model which
does not consider the periodic noise component.

For the CNN in our noise generator, we use a standard
2D residual U-Net architecture, with 4 input and output
channels, 4 upsampling and downsampling layers, stride-
2 convolutional downsampling layers, stride-2 transpose
convolutional upsampling layers, and SeLU activations. The
number of channels in our 4 downsampling and upsampling
layers are 32, 64, 128, and 256.

real noiseoursours (no periodic) clean
Noise patches in Fourier space

pixels

in
te

ns
ity

Figure 1. Fourier transform of clean and noisy patches, showing
the prominent spike in Fourier space that we see in the real noisy
images. Our full model captures this behaviour.

We initialize our shot, read, row, and row temporal noise
parameters to 2e-1, 2e-2, and 2e-3, and 2e-3 respectively.
We initialize our uniform noise parameter to 1e-1, and our
periodic parameters to 5. In general, we note that the
initialized value of these parameters did not seem to effect
the final converged value as long as the initial values were
small.

Our discriminator’s architecture is outlined in Fig. 2. We
feed in images with a patch size of 64 into the discriminator
during training. We use an Adam optimizer [1] with a
learning rate of 0.0002, with β1 = 0.5 and b2 = 0.999 for
both the generator and discriminator. For each experiment
in our generator ablation study, we feed both the noisy
patch as well as the Fourier transform of the noisy patch
into the discriminator, which we found resulted in better
performance than using either the image or the Fourier
transform of the image alone. For the final two comparisons
in the ablation (all the noise parameters with U-Net and all
the noise parameters without the U-Net) we use only the
Fourier transform of the image in the discriminator, which
resulted in the best performance given those parameters.
In all experiments, we add an LPIPS loss to our generator
loss. We take a gradient step on the generator after every 5
gradient steps on the discriminator.

1.2. Denoiser details

We base our denoiser on FastDVDnet [3]. We modify the
FastDVDnet architecture in two ways. First, we increase the
number of channels to 4 instead of 3 to facilitate processing
our RAW images. Next, we modify the denoiser blocks.

1

Conv2d (3x3, stride 1),
spectral norm, Leaky ReLU
Conv2d (3x3, stride 2),
spectral norm, Leaky ReLU
fully connected layer
(linear, spectral norm,
Sigmoid)

synthetic/real
noise

output

Figure 2. Discriminator architecture. We use our discriminator
during our noise generator training.

Stage Nbr Nc Nm Nbl

1 1 [64] 1 [4]
2 2 [18, 36] 1 [4,4]
3 3 [18, 36, 72] 3 [4,4,4]
4 4 [18, 36, 72, 144] 3 [4,4,4,4]

Table 1. HRNet architecture

The original implementation of FastDVDnet uses a U-Net
architecture for the denoising blocks. We replace this
architecture with HRNet blocks. In our raw high gain,
low light videos, we often see flashing and differences
in colors between frames (Figure 3). Experimentally, we
found that using HRNet blocks reduces the flickering across
frames that we see at our lowest light settings. Figure 3
shows an example of this with a FastDVDNet denoiser using
U-Net blocks vs. as FastDVDnet denoising with HRNet
blocks. When plotting the mean intensity over time, we
can see that version with HRNet blocks has less variance in
the intensity, effectively smoothing out the flickering over
frames, whereas the FastDVDNet with U-Net blocks is not
effective at reducing flickering, having a higher variance in
the mean intensity over time.

Following from FastDVDnet, our denoiser architecture
consists of two denoising blocks. Each block takes in 3
images with 4 channels each (12 channels total) and outputs a
single image with 4 channels. We use an HRNet designed for
semantic segmentation [2,4,5] and slightly modify it to work
on our images by replacing the initial stride-2 convolutions
to stride-1 convolutions. Our HRNet has 4 stages. The first
stage consists of a Bottleneck block, while the remaining
stages consists of Basic blocks. We summarize the number
of branches (Nbr), number of channels (Nc), number of
modules (Nm), and number of blocks (Nbl) in each stage in
the Table 1.

1.3. Camera details

For all noisy sequences, we use the highest camera gain:
16× column amplifier gain), 6dB CDS Gain, and 1023 VGA
gain. In addition, all images are stored as RAW unprocessed
images with RGB+NIR channels. The clean images were
taken at 1× column amplifier gain, 6dB CDS Gain, and 10
VGA gain. For all images, the exposure on the clean/noisy
images was set to approximately match their intensities

input

FastDVDnet + U-Net

FastDVDnet + HRNet

FastDVDnet + U-Net

FastDVDnet + HRNet

Mean intensity over frames

frames
M

ea
n

in
te

ns
ity

0 10 20 30

0.275

0.250

0.225

Figure 3. Architecture comparison: FastDVDnet + Unet vs
FastDVDnet + HRnet. Here we can see that original FastDVDnet
results in more flickering between frames than our modified
FastDVDnet (with HRnet).

(1000×). For all sets of images, a scalar offset to correlate
the mean intensity for the clean/noisy pairs was calculated
and applied to each clean image to match the mean to that
of the noisy images.

2. Additional Results

2.1. Simplified Noise Model results

Next, we perform an additional ablation in which we keep
our denoiser constant and use a different noise generator to
synthesize our noisy video clips. We compare using our full
noise generator against our full noise generator without the
U-Net and with only read, shot, and uniform noise in Table 2,
showing the performance on our stills dataset. We can see
that our full model with the U-Net performs the best. We
anticipate that the U-Net is able to learn additional features
of the noise that we do not explicitly model (e.g. chromatic
effects in the noise) and perhaps augment any simplifications
in our noise mode (e.g. using a heteroscedastic Gaussian
noise model rather than a Poisson model for shot noise).
Given better synthetic noise, our denoiser can successfully
tackle sensor-specific noise and produce the best denoised
images.

2

Method PSNR SSIM LPIPS
Ours (Shot+read+uniform) 23.8 0.861 0.111
Ours no U-Net 25.5 0.910 0.115
ours (full) 27.7 0.931 0.078

Table 2. Performance on still images from test set.

2.2. Stills Results

Next we provide additional images to showcase our
results on our stills dataset. We compare against V-BM4D,
L2SID, N2S, and FastDVDNet. We compare both against
pretrained L2SID as well as L2SID retrained using our stills
dataset. Two example images are shown in Figure 4. Here
we can see that V-BM4D and N2S both have significant
line artifacts throughout the images. Pretrained L2SID has
issues with color, since our camera has an additional NIR
channel rather than only RGB channels, and also blurs out
features due to differences in our camera noise. When
we pretrain L2SID using our own data, the performance
improves substantially for still images as expected. Since
L2SID is a single-image method and ours uses 5 images to
collaboratively denoise an image, we still outperform L2SID
in dark regions of the image (e.g. the text on the cans in clip
2). Furthermore, retrained L2SID results in severe flickering
and poor performance on moving videos (see attached video
clips). Similarly, pretrained FastDVDNet contains stripe
artifacts and has reduced resolution since it is trained using
a Gaussian noise model. Our method closely matches the
ground truth images, maintaining the image features while
suppressing the noise.

See attached supplemental video for a video comparison
between our method, V-BM4D, L2SID (retrained on our
stills data), and FastDVDNet. All videos are downsized
by 2× from the full resolution and cropped by 880×630
pixels (full resolution is 2160×1280). In addition, we
provide a video with a compilation of denoised clips from
our submillilux dataset. In these videos, we demonstrate
the performance of our denoiser at the most challenging low
light setting with significant motion.

2.3. Perceptual Experiments

We perform a perceptual experiment with blind
randomized A/B tests between our method, V-BM4D,
FastDVDNet, and L2SID. We show 10 clips from our
submillilux dataset. Each clip is 30 frames long and is
cropped to a 400×400 region which shows significant
motion. During the experiment, we show 2 video clips side
by side in a randomized order and workers are asked which
clip they prefer. We run 300 comparisons in total with 10
workers. The results are summarized below:

• 95.0 [+/- 4.27]% prefer our method over FastDVDNet.

• 99.0 [+/- 1.95]% prefer our method over L2SID.

• 97.0 [+/- 3.34]% prefer our method over V-BM4D.

As we can see, in all the experiments, video clips
produced by our method are preferred over alternative
methods by a large margin.

References
[1] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. 1

[2] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation.
In CVPR, 2019. 2

[3] Matias Tassano, Julie Delon, and Thomas Veit. Fastdvdnet:
Towards real-time deep video denoising without flow
estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1354–1363,
2020. 1

[4] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recognition.
TPAMI, 2019. 2

[5] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. 2020.
2

3

input

ground
truth

ours

V-BM4D L2SID

FastDVDnet

N2S

input V-BM4D

ground
truth

ours

L2SID

FastDVDnet

N2S

L2SID
(retrained on

our stills)

L2SID
(retrained on

our stills)

Clip 2

Clip 1

Figure 4. Denoising comparison on two noisy bursts of still objects from our test set.

4

