
How many Observations are Enough?
Knowledge Distillation for Trajectory Forecasting - Supplementary Material

Alessio Monti1 Angelo Porrello1 Simone Calderara1 Pasquale Coscia2

Lamberto Ballan2 Rita Cucchiara1

1University of Modena and Reggio Emilia, Italy 2University of Padova, Italy

∇xt = 1 ∇xt = 2 ∇xt = 3
Input (x7, x8) (x6, x8) (x5, x8)

STT 0.73 / 1.44 0.80 / 1.53 0.88 / 1.63
DTO 0.64 / 1.27 0.66 / 1.32 0.69 / 1.37

Table 1. On the SDD, an analysis of increasing time-lags ∇xt

with a fixed number of observed time steps (only two).

1. Time lags

We also investigate how our method performs when in-
creasing the lag between the two observation used for pre-
diction. As highlighted in Tab. 1, the procedure we set up
yields robust performance even in this setting.

2. On the “length-shift problem” – additional
considerations

As outlined in Sec. 5.5, trajectory prediction models
show remarkable performance when evaluated according to
the standard protocol, viz., 8 observation time steps and 12
prediction time steps. Nevertheless, we argue that their pre-
dictions overly bind to the data used at training time. To
prove our intuition, we thoroughly investigate how models
behave when the number of input time steps changes at eval-
uation time, which we define as “length-shift problem”.

As shown in Fig. 1, this behaviour is a common
trait among different models: more specifically, we re-
port the ADE metric for different categories of predic-
tors (generative [4], LSTM-based [14], attention-based) and
observation-prediction splits (8–12, 7–12, etc.). As ex-
pected, the optimum always occurs when train/test condi-
tions met; on the contrary, altering the amount of input in-
formation (even slightly, i.e., removing a single time step)
produces detrimental effects and delivers unacceptable in-
ference errors. This behaviour could limit the usage of these
models when there is no perfect match between train/test
conditions.

Figure 1. For different architectures (Variational RNN [4], SR-
LSTM [14] and our STT), the performance trends when altering
the number of observation time steps at evaluation time (ETH).

Addressing the length-shift problem on the Stanford
Drone Dataset. We also report our results using different
training strategies on the Stanford Drone Dataset (Tab. 2).
These results are similar to what has been observed on
ETH/UCY and Lyft datasets. Training from scratch gives
unsatisfactory results: the student is not able to observe
enough information about agents’ motion history. Training
with a variable number of observations makes our model in-
variant to the amount of information it is fed with, but it de-
livers overly high errors. Generating missing observations
introduces too much noise to obtain reliable predictions. As
reported in the main paper, DTO appears the most promis-
ing strategy, being able to exploit enough past information
even when the number of observations is limited.



Dataset Training strategy obs=2 obs=3 obs=4 obs=5 obs=6 obs=7 obs=8

SDD

From scratch 0.73/1.44 0.67/1.31 0.65/1.30 0.65/1.29 0.64/1.29 0.65/1.32 0.63/1.26

Variable observations 0.92/1.78 0.95/1.75 0.97/1.75 0.89/1.63 0.82/1.55 0.81/1.54 0.83/1.56
Past generation 0.85/1.58 0.76/1.45 0.73/1.42 0.74/1.45 0.71/1.39 0.67/1.35 -
Distilling the Observations 0.64/1.27 0.64/1.27 0.64/1.28 0.64/1.28 0.63/1.26 0.62/1.22 0.63/1.27

Table 2. Comparison (ADE/FDE) between different training strategies on the Stanford Drone Dataset; all methods are trained and tested
on the same number of time steps, reported in the header. Best results are in bold. The distillation teacher is in underlined italic.

Figure 2. Example of a batch mask for the STT spatial atten-
tion. Before the softmax layer, logits corresponding to 0 values
are masked and set to −∞. This way, agents are allowed to attend
only on the neighbouring agents in the same scene (e.g. scene k)
at the given time step.

3. Spatial masking
Our Spatio-Temporal solution (STT) relies on a sin-

gle transformer-based architecture with shared parameters.
Since batches are composed of randomly sampled scenes,
performing a plain spatial self-attention without further so-
lutions would result in attending on agents that appear in
different scenes. To prevent attending on wrong agents, we
build a dedicated spatial attention mask.

As done in [7,9,13,14], we represent the pedestrian space
as an undirected graph. In doing so, the adjacency ma-
trix describes spatial relationships occurring among differ-
ent nodes (agents). We employ a distance-based adjacency
matrix where, in order to focus only on the neighbourhood,
we preserve (i.e., set to 1) the edges that are associated to
distances smaller than a given threshold d. Moreover, as
shown in Fig. 2, we cluster adjacency matrices of different
scenes in batches by devising a block irregular matrix: this
matrix is built by aligning several adjacency matrices on the
main diagonal and by setting to 0 the remaining values.

By employing this matrix as a mask applied to the log-
its before the softmax operation, we are able to restrict the
attention scope only to agents that: i) share the same scene

and time steps; ii) are spatially close to each other. In our
implementation, we set to −∞ all the attention logits cor-
responding to 0-values in the mask.

4. Datasets preprocessing
Frame-rate. Following the ETH/UCY setting proposed
in [1,6,10], we employ a sampling rate of 2.5 FPS. By sam-
pling agents’ positions every 0.4s, employing 8 frames of
observation and 12 frames of prediction corresponds to ob-
serve the trajectories for 3.2 s and predicting their future
development in the next 4.2 s. We use the same frame also
for both Stanford Drone and Lyft datasets.

Data preparation. Several previous works [1,2,6,9] repre-
sent input trajectories as a series of relative displacements:
namely, each absolute position xt is transformed in a cou-
ple of displacements (∆xt,∆yt) w.r.t. the previous posi-
tion xt−1. Differently, [14] proposes to preserve absolute
positions and normalize them by subtracting the last obser-
vation: this procedure, referred to as Nabs, seems to grant
higher benefits. We opt for this solution (as in [13]).

ETH/UCY issues. Recent works [11, 14] brought up sev-
eral issues affecting the ETH/UCY dataset. [14] points out
that the original video used to obtain the labelled trajectories
for the ETH scenario is accelerated, thus strongly affecting
the resulting motion patterns: when sampling at a fixed rate,
the trajectories of this scenario present higher speeds than
the ones captured in the remaining scenes. The authors mit-
igate this issue by treating 0.4 s as 6 frames instead of the
original 10 frames. To ensure a fair comparison [13,14], we
choose to adopt the same correction.

In addition, [11] shows that Hotel scene mostly con-
tains trajectories that are orthogonal to the ones contained
in the other four scenarios. This peculiarity could prevent
the model from learning useful environmental priors. To
overcome this issue, we follow [13, 14] and employ data
augmentation by applying a random rotation to each posi-
tion inside each mini-batch.

5. Implementation details
Teacher. We initialize the weights of our architecture ac-
cording to [5]. All teacher networks are trained for 1000



epochs using Adam [8] as optimizer.
For ETH/UCY, our Spatio-Temporal Transformer em-

ploys two layers for each encoder and decoder stack. We
use internal embeddings of size dmodel = 64 and set the di-
mension dff of the position-wise feed-forward inner layer to
128. We employ 8 attention heads for each temporal and
spatial attention and set the size of queries, keys and val-
ues to dk = dv = dmodel/8 = 8: reducing the dimension
of each head allows to obtain a similar computation cost to
a single-head attention with “full” dimensionality [12]. We
use a batch size of 16 and a learning rate of 10−4.

For SDD, our Spatio-Temporal Transformer employs a
single layer for each stack. We use internal embeddings of
size dmodel = 32 and set the dimension dff of the position-
wise feed-forward inner layer to 128. We employ 8 atten-
tion heads for each temporal and spatial attention and, as
reported above, obtain the size of queries, keys and values
by dividing dmodel by the number of heads. We use a batch
size of 32 and a learning rate of 5 · 10−4.

For Lyft, our Spatio-Temporal Transformer employs a
single layer for each stack. We use internal embeddings of
size dmodel = 32 and set the dimension dff of the position-
wise feed-forward inner layer to 128. We employ 8 atten-
tion heads for each temporal and spatial attention and, as
said above, obtain the size of queries, keys and values by
dividing dmodel by the number of heads. We use a batch size
of 32 and a learning rate of 5 · 10−5.
Distillation. Regarding the student initialization, we empir-
ically found more beneficial to inherit the teacher weights
rather starting from scratch. We believe that starting from
a solid parametrization eases the student effort: this way,
the student can just adjust the previously learned weights
while preserving as much knowledge as possible. In con-
trast, we observe that learning weights from scratch rep-
resents an overly detrimental situation: the student rarely
approaches the results of its teacher.

Furthermore, we set our teacher network in training
mode during distillation. In this way, the statistics of the
different normalization layers are computed on a batch ba-
sis: as reported in [3], this grants more accurate teacher su-
pervision.

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 2

[2] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. Social
ways: Learning multi-modal distributions of pedestrian tra-
jectories with gans. In Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2019.
2

[3] Hessam Bagherinezhad, Maxwell Horton, Mohammad
Rastegari, and Ali Farhadi. Label refinery: Improving im-
agenet classification through label progression, 2018. 3

[4] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. A recurrent la-
tent variable model for sequential data. In Proc. of Advances
in Neural Information Processing Systems (NeurIPS), 2015.
1

[5] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Proc.
of the Int’l Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2010. 2

[6] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social GAN: Socially acceptable tra-
jectories with generative adversarial networks. In Proc. of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[7] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. Stgat: Modeling spatial-temporal interactions
for human trajectory prediction. In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.
2

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. of the International Con-
ference on Learning Representations (ICLR), 2015. 3

[9] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2

[10] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social be-
havior for multi-target tracking. In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2009.
2

[11] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll. What the
constant velocity model can teach us about pedestrian motion
prediction. Proc. of the IEEE international Conference on
Robotics and Automation (ICRA), 2020. 2

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proc. of Advances
in Neural Information Processing Systems (NeurIPS), 2017.
3

[13] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi.
Spatio-temporal graph transformer networks for pedestrian
trajectory prediction. In Proc. of the European Conference
on Computer Vision (ECCV), 2020. 2

[14] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. Sr-lstm: State refinement for lstm towards
pedestrian trajectory prediction. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2


	. Time lags
	. On the ``length-shift problem'' – additional considerations
	. Spatial masking
	. Datasets preprocessing
	. Implementation details

