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1. Overview

In this supplementary material, we provide more details
of the submission: We show quantitative results of struc-
ture swapping in Section 2; We provide ablation studies
on the objectives, as described in Section 3; We conduct a
user study on disentangling structure and texture by swap-
ping the attributes of the generated images, as described in
Section 4; We answer the question of how an MLP mod-
els explicit transformation between canonical and warped
coordinate frames in Section 5; More implementation de-
tails are discussed in Section 6; We show at last in Section
7 the application of the finetuning the CoordGAN on other
domains.

2. Quantitative Results on Structure Swapping

We present quantitative comparisons to the SOTA struc-
ture swapping method Diagonal GAN. We sample 5000
pairs of images, each pair with the same texture code and
different structure codes. Each pair is evaluated by both
the LPIPS (to measure how the structure varies) and the Ar-
cFace (to evaluate whether identity changes) scores. Co-
ordGAN has better performance: 0.75 over 0.65 for Ar-
cFace, and 0.55 over 0.50 for LPIPS. The results indicate
that, with the same texture code, different structure codes of
CoordGAN produce images of larger structural variations,
whereas Diagonal GAN tends to generate images with sim-
ilar identities. This demonstrates the structure and texture
are better disentangled with the proposed method.

3. Ablation Studies

Ablation for image synthesis. In this part, we study the
effect of different loss functions for training the generator.
As shown in Table 1, it is observed that the combination
of the warp loss, structure swapping constraint and texture
swapping constraint achieve the best performance. Without
the texture swapping constraint, the texture code tends to
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Disentanglement Label Propagation
LPIPS| Arcface | | CelebA-HQ DGAN-face

CoordGAN 0.10 0.32 52.25 23.78

w/o warp loss 0.11 0.22 24.84 10.52

w/o structure swap | 0.18 0.51 46.52 18.53

w/o texture swap 0.64 0.90 45.96 17.66

Table 1. Ablation on generator losses on CelebAMask-HQ. We
show that incorporating the all losses is essential to good disentan-
glement and label propagation performance (measured by IOU).

Reconstruction
LPIPS| Arcface | MSE]

Label Propagation
CelebA-HQ DGAN-face

CoordGAN 0.25 0.49 0.03 52.25 23.78
w/o latent consistency | 0.28 0.59 0.04 46.19 21.50
w/o texture swap loss 0.23 0.47 0.03 50.83 23.53

Table 2. Ablation on encoder losses on CelebAMask-HQ. We
show that incorporating all the losses is essential to faithfully re-
constructing the input and encoding accurate correspondence.

take the majority of the variances while the warped coordi-
nates are similar across different samples. Without the warp
loss, the correspondence performance drops significantly.
This suggests that regularizing the correspondence maps is
crucial to extracting dense correspondence accurately.

Ablation for encoder. In this part, we fix the parameters
of the generator and study the effects of different loss func-
tions for training the encoder. Table 2 compares the recon-
struction performance with respect to different loss combi-
nations. We find that both the latent consistency and the
texture loss are essential to achieving the best reconstruc-
tion performance. While removing the texture swapping
loss results in lower reconstruction errors, we find the cor-
respondence performance slightly decreases. Without the
latent consistency loss, both reconstruction and correspon-
dence performance drop significantly. This indicates that
encouraging the encoded structure to match the learned dis-
tribution plays an important role to model accurate corre-
spondence for real image inputs.
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Figure 1. Auto-encoder architecture. The encoder takes an image as input and outputs a latent structure code and a latent texture code.
Then the generator takes the predicted structure and texture latent codes and outputs images.

4. User Study on Attribute Swapping

We conduct a user study to further evaluate the disen-
tanglement of structure and texture for the proposed Co-
ordGAN and Diagonal GAN. Given a pair of images gener-
ated with the same structure code but diverse texture codes,
we ask users on AMT to rate the pairs of images based on
their structural similarity with a score from 1 to 5. A higher
score indicates that the pair of images are more similar in
terms of structure. Likewise, we ask users to rate the tex-
ture similarities of images generated with the same texture
code but diverse structure codes. For each dataset, we ran-
domly sample 200 image pairs and each pair of images is
rated independently by three individuals.

Table 3 shows that CoordGAN significantly outperforms
DiagonalGAN in terms of texture-swap ratings on both
CelebAMask-HQ and Stanford Cars datasets. This further
suggests that the proposed approach of modeling the struc-
ture with a coordinate space effectively disentangles fine-
grained structure from texture. While both methods per-
form similarly in terms of structure-swap studies, we em-
phasize that many structure-swapped pairs from Diagonal-
GAN are just slightly different as the learned structure code
is only responsible for coarse viewpoint. More visualization
results are shown in Figures 3 to 9.

5. Coordinate Warping Network Analysis

In this section, we validate that the coordinate warping
network, designed as an MLP conditioned on the sampled
structure code, formulates an explicit geometric transforma-
tion between the canonical coordinate frame and a warped
coordinate frame. Formally, a geometric transformation be-

CelebAMask-HQ Stanford Cars
Struc-swap 1T Text-swap T | Struc-swap T Text-swap 1
Diagonal GAN 3.39 2.83 3.76 3.11
CoordGAN ‘ 3.32 3.68 ‘ 3.58 3.77

Table 3. User study on attribute swapping. Struc-swap denotes
the setting where the pair of images are generated with the same
texture code but different structure codes; Text-swap denotes the
setting where the pair of images are generated with the same struc-
ture code but diverse textures.
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Figure 2. Coordinate warping network design. Sampler indicates
the grid sampling operation.

tween two coordinate frames should satisfy two properties:
(1) one-to-one mapping exists between each element of two
sets; (2) the transformation is invertible.

In the following, we show that the coordinate warping
network equivalently outputs a flow w.r.t. each input coor-



CelebA-HQ Stanford Cars
LPIPS | Arcface | FID| |LPIPS| FID |
CoordGAN 0.22 0.38 16.16 0.21 24.27
CoordGAN-B 0.19 0.38 15.45 0.18 23.95

Table 4. Image generation results on Coordinate Warping Network
with backward MLP (Coord GAN-B).

‘ CelebA-HQ DGAN-face DGAN-car
52.25 23.78 13.23
54.51 25.44 12.59

CoordGAN
CoordGAN-B

Table 5. Label propagation results on Coordinate Warping Net-
work with backward MLP (CoordGAN-B). Measured by IOU.

dinate, which satisfies the aforementioned property (1). We
begin by defining another pixel coordinate frame P denot-
ing pixel locations. This is numerically similar to the canon-
ical coordinate frame, where coordinates are normalized to
the range [-1, 1]. For example, P(1,1) = (1, 1) indicates
the bottom right pixel is of value (1,1). It then follows that
the proposed coordinate warping network, as shown in Fig-
ure 2 (a), is equivalent to the architecture in Figure 2 (b).
This comes from two facts: (i) the pixel coordinate frame
is constructed exactly the same as the canonical coordinate
frame; (ii) the grid sampling operation in Figure 2 (b) out-
puts exactly the same value as the MLP output as the MLP
is constrained to output values from -1 to 1. Therefore, we
show that, given a structure code, the MLP learns a transfor-
mation from the canonical coordinate frame to the warped
coordinate frame.

In addition, we build another backward MLP to satisfy
the second property, such that warped coordinates can be
back to canonical coordinates with the same structure code.
Specifically, as shown in Figure 2 (c), we construct another
three-layer MLP to map warped coordinates to canonical
coordinates. To distinguish the MLP mapping from canon-
ical coordinates to warped coordinates, we refer to this one
as the Backward MLP (B-MLP). We train CoordGAN with
the additional B-MLP (CoordGAN-B) from scratch, where
the B-MLP is supervised with an additional L.1 loss between
the predicted canonical coordinate frame and ground-truth
canonical coordinate frame. As show in Table 4 and Table 5,
CoordGAN-B achieves on average better performance in
both image synthesis and label propagation.

To this end, we prove that the proposed MLP models
an explicit geometric transformation between the canonical
coordinate frame and a warped coordinate frame. We opt
for an MLP as it preserves the order of the coordinates in
the canonical coordinate frame due to its continuity. Since
an explicit transformation is learned, it ensures that, when
the MLP outputs the same coordinate given two different
structure codes, these two positions are corresponding to
the same coordinate in the canonical frame.

6. Implementation Details

We introduce the training details and specify the archi-
tecture for each module of our network.

6.1. Architecture

Generator. Both the sampled structure and texture codes
are 512-dimensional. The structure and texture mapping
networks are implemented with an 8-layer MLP with a la-
tent dimension of 512. The coordinate warping network,
conditioned on a latent structure code, is implemented with
a three-layer MLP. A tanh function is used at the output of
the coordinate mapping network to ensure that the output
is within a valid coordinate space. The dense correspon-
dence map is passed to a positional encoding layer where, a
Fourier embedding with 512 channels is obtained by the ap-
plication of a 1 x 1 convolution followed by a sine function.
In all experiments, the canonical coordinate map and the
correspondence map are defined with a spatial resolution
of 128. The modulated generator consists of 10 layers and
all layers are with 512 channels. The design of each layer
is similar to StyleGAN2. We follow StyleGAN?2 to inject
the latent texture code into different layers of the modu-
lated generator via weight modulation/demodulation. The
dense correspondence map is concatenated with all 10 lay-
ers of the modulated generator, as shown in Figure 1. To
generate higher resolution images, another two upsampling
blocks are added to the last layer of the modulated genera-
tor. Note that the correspondence map is not concatenated
to these upsampling blocks. Skip connections are used to
combine features for every two layers from intermediate
feature maps to RGB values.

Patch Discriminator. The patch discriminator architec-
ture for the structure-swapping constraint is designed fol-
lowing Swapping Autoencoder. The patch discriminator
consists of a feature extractor of 5 downsampling residual
blocks, 1 residual block, and 1 convolutional layer, and a
classifier. Specifically, 8 randomly cropped patches from
the same image are used as reference. Each patch is cropped
randomly from % to § of the image dimensions for each
side. All cropped patches are resized to i of the image
size and then input to the patch discriminator. Each patch is
passed to multiple downsampling blocks to obtain a feature
vector. The feature vectors of all reference patches are aver-
aged and then concatenated with a feature vector from a real
or fake patch. The real patches are patches from the same
image as the reference patches and fake patches are from a
structure-swapping image. The classifier finally determines
whether the concatenated feature vector is real or fake.

Encoder. Given an image, the encoder produces two 512
dimensional vectors. As shown in Figure 1, our encoder
network design follows Swapping Autoencoder. The dif-
ference is that instead of outputting a feature map for the
structure code, the proposed design outputs a 512 dimen-



sional structure code. Specifically, 4 downsampling resid- [2] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze dis-
ual blocks are first applied to produce an intermediate ten- criminator: A simple baseline for fine-tuning gans. CoRR,
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code and texture codes. The structure code is produced by

first applying 1-by-1 convolutions to the intermediate ten-

sor, reducing the number of channels and then applying a

fully-connected layer. The texture codes in the W+ space

are produced by applying stride convolutions, average pool-

ing, and then different dense layers.

6.2. Training Details

To train the generator, we follow StyleGAN2 and use the
non-saturating GAN loss and lazy R1 regularization. The
R1 regularization is also applied to the patch discriminator.
The weight of the R1 regularization is 10.0 for the image
discriminator and is 1.0 for the patch discriminator. We use
the ADAM optimizer with a learning rate of 0.002 and with
£1 = 0.0 and By = 0.99. The batch size is set to 16 with 8
GPUs. Coefficients for different losses are set as following:
Acham = 100, Agan = 2, Ay = 5, Aparp = 5, Ay = L.
To warm up training, for the first 20k iterations, Ayqrp, At
and A are linearly increased from 0. For celebAMask-
HQ, we train the generator for 300k iterations at the res-
olution 128 x 128 and then train at a high resolution for
another 200k iterations. For the Stanford Cars and AFHQ-
cat datasets, we train the generator for 300k iterations at the
resolution 128 x 128. The hyper parameters for training the
encoder are selected as following: A... = 10, Ao, = 10,
At = 5. The encoder is trained for 200k iterations.

7. Application in Other domains

In this section, we show that the CoordGAN can han-
dle structure texture transfer on other domains, e.g., paint-
ings. Specifically, we finetune the CelebAMask-HQ pre-
trained model at the resolution of 512 x 512 on the met-
faces dataset [1]. The metfaces dataset contains 1336 high-
quality images at 1024 x 1024 resolution. Following [2],
we freeze the first three high resolution layers of the dis-
criminator during finetuning. Furthermore, to enable tex-
ture swapping across different domains, we fix the weights
of the structure mapping network and coordinate mapping
network. As show in Figure 10, we qualitatively demon-
strate that, CoordGAN can generate arts with high quality
by combining the structure representation learned from real
images with texture codes learned from arts. Note that the
structure-texture disentanglement is still well maintained.
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Generated Images

Figure 3. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 4. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).



Generated Images

Figure 5. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 6. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).



Generated Images

Figure 7. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 8. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 9. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).



Figure 10. Images synthesised by the proposed CoordGAN model: the first row displays correspondence maps; from the second row to the
bottom, each row displays images with the same texture but different structures; in each column, texture varies while structure is fixed.



