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A. Overview
In this supplementary material, we present additional

insight into the probabilistic normal epipolar constraint
(PNEC) energy function, give more details about the prac-
tical implementations of the PNEC rotation estimation, and
show further experimental results. We address limitations
of the PNEC in Sec. B. Sec. C shows how we use the KLT
tracking to extract position covariance matrices. The un-
scented transform and its use for uncertainty propagation
are presented in Sec. D. Sec. E gives geometric insights into
the PNEC. We derive the directional limit for the singulari-
ties in Sec. F. The self-consistent-field (SCF) optimization
is explained in Sec. G. Sec. H gives an overview of the hy-
perparameters we use in our experiments. The simulated
experiments for additional noise types not presented in the
main paper are shown in Sec. I. Sec. J presents further re-
sults of the simulated experiments with regard to the energy
function. Experiments on the influence of anisotropy and
wrongly estimated covariance matrices are given in Sec. K
and Sec. L. We show further analysis of the results on the
KITTI dataset together with an ablation study in Sec. M.

B. Limitations
This section will give further details and explanations,

which were not mentioned in the main paper due to the
constrained space, regarding the limitations of the proposed
method.

As written in the main paper, the PNEC optimization
scheme consists of two stages that result in a more in-
volved optimization than for the original normal epipolar
constraint (NEC). Due to the iterative optimization and
the joint refinement, the PNEC will not be as fast as the
NEC, which is shown by the runtime experiment in the
main paper. However, the integration of both methods into
a RANSAC scheme mitigates the difference between them.

* equal contribution. Project page: https://go.vision.in.tum.de/pnec

Overall, our PNEC and the NEC both run in real-time on
the KITTI dataset.

A further limitation of the PNEC is its dependence on
additional positional uncertainty. In contrast, the NEC only
requires feature positions. While the positional uncertainty
allows our PNEC to achieve more accurate rotation esti-
mation, the information needs to be sufficiently accurate to
provide a benefit. The influence of insufficient information
can be seen in the results on seq. 01 of the KITTI dataset,
where the KLT tracker produces wrong feature positions
and uncertainty. The the poor performance of the NEC can-
not be overcome by the PNEC. The PNEC puts emphasis on
accurately tracked feature correspondences during its opti-
mization. However, given poor feature correspondences it
can emphasize wrong features. Therefore, outlier removal
is a necessary step for the PNEC.

In our formulation of the PNEC we assumed a Gaussian
error model for the feature position. This assumption is not
accurate for most feature position errors. A more sophisti-
cated error model could lead to even more accurate rotation
estimates. However, it would also lead to a more intricate
energy function. We consider this an interesting direction
for further investigations. The performance of the PNEC on
the KITTI dataset shows that the Gaussian assumption can
deliver good performance for real-world data.

C. Extracting Feature Position Uncertainties
from KLT Tracks

In the following, we explain how to obtain position un-
certainties from the energy function. To this end, we first
introduce the relationship between an energy function and
the Boltzmann distribution, then the Laplace approxima-
tion, and finally apply both to Kanade-Lucas-Tomasi (KLT)
tracks.

Given an energy function E(x) : Rd → R we can derive
an associated probability distribution

p(x) = Z−1 exp(−E(x)) (1)

that is often referred to as the Boltzmann distribution [3,
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Energy E(x)
Probability density p(x) = Z 1exp( E(x))
Laplace Approximation

Figure 1. The plot shows the energy function E(x) (dotted
blue), the normalized distribution p(x) (orange), together with the
Laplace approximation centered on the mode x∗ of p(x) (dashed
green).

Eqn. (8.41)]. The constant Z > 0 ensures that the distribu-
tion is normalized. If x∗ is a local minimizer of E(x) and
thus at a local maximum of p(x) we can use the Laplace
approximation to derive a Gaussian distribution that locally
approximates p(x) around x∗ [3, Sec. 4.4]. For an illustra-
tion please see Fig. 1. Specifically, the Gaussian distribution
has mean µ = x∗ and inverse covariance

Σ−1 =
d2

dx2
E(x)

∣∣∣∣
x=x∗

, (2)

where d2

dx2 denotes the Hessian matrix.
For KLT tracking we use the sum of squared normalized

differences as the energy function

EKLT (T ) =
∑
p∈P

(
Ih(p)

Īh
− It(T (p))

Īt

)2

, (3)

where

Īh =
1

|P |
∑
pi∈P

Ih(pi), Īt =
1

|P |
∑
pi∈P

It(T (pi))

are the mean intensity in the host frame Ih and target frame
It, respectively. Furthermore, T is the transformation be-
tween host and target frame that is being optimized, P is
the pattern of pixels over which the sum is computed, and
|P | denotes the number of pixels in P .

The KLT tracking implementation from [10] that we use
for our experiments on KITTI uses the inverse composi-
tional formulation [1] that allows for more efficient track-
ing. Due to this formulation, the tracking optimizes a proxy
for Eq. 3 and thus the approximation of the Hessian of the
energy function is computed once in the host frame. The
full explanation of the inverse compositional formulation is
outside the scope of this paper and for further details we

kindly refer the reader to the excellent paper by Baker and
Matthews [1], which is the first in a multi-paper series.

Because the approximate Hessian is computed in the
host frame only we omit the subscript and denote the host
frame by I in the following. We first compute the Jaco-
bian for each pixel pi in the pattern P and then accumulate
all Jacobians into the Gauss-Newton approximation of the
Hessian. We denote the image gradient by ∇I(p) and the
Jacobian w.r.t. the pixel position by Jpi

, which gives

Jξ,i =

(
1 0 −pi,y
0 1 pi,x

)
(4)

Jpi
= |P |

∇I(pi)
>Jξ,i

∑
pj∈P

I(pj)− I(pi)
∑
pj∈P

∇I(pj)
>Jξ,j( ∑

pj∈P
I(pj)

)2

(5)

JSE(2) =


J1

J2

...
Jn

 (6)

HSE(2) = J>SE(2)JSE(2) (7)

ΣSE(2) = H−1SE(2) (8)

The patches are tracked w.r.t. an SE(2) transforms and
thus the covariance ΣSE(2) is for the full SE(2) transform,
i.e. the translation u, v in pixel coordinates as well as the 2D
rotation by an angle θ. As we only consider the position, we
take the marginal over the first two coordinates by selecting
the upper left 2 × 2 sub-matrix Σ2D,h in the host frame.
We then transform this matrix to the target frame using the
estimated rotation

Σ2D,t = RθΣ2D,hR
>
θ , (9)

where Rθ is the 2D rotation matrix corresponding to a ro-
tation by an angle θ. Finally, the matrix Σ2D,t is the matrix
we use for the PNEC and denote Σ2D in the main paper.

D. Unscented Transform

In the following, we give an overview over the unscented
transform [9] and present how it it used in the PNEC. For
an illustration of the unscented transform see Fig. 2. The
unscented transform gives an approximation for the mean
and covariance if a non-linear transformation is applied to
a Gaussian distribution. The unscented transform computes
the mean and covariance from selected points to which the
non-linear transformation is applied. Given a mean µ ∈ Rn
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(a) Linear approximation (b) Unscented transform

Figure 2. Illustration of the difference between linear approxima-
tion (a) and unscented transform (b) of the projection of the covari-
ance onto the unit-sphere in 2D. The linear approximation of the
projection results in a covariance tangential to the unit-sphere—
the covariance matrix does not have full rank. The unscented trans-
form captures the non-linearity of the projection—the covariance
matrix has full rank.

and covariance Σ ∈ Rn×n the unscented transform selects
2n+ 1 points

ξ0 = µ ,

w0 =
κ

n+ κ
,

ξi,i+n = µ±
√
n+ κCi i = 1 . . . n ,

wi,i+n =
1

2(n+ κ)
i = 1 . . . n ,

(10)

with corresponding weights around the mean, where Ci is
the i-th column of the matrixC such that Σ = CC>, and κ
controls the spread of the points, which we set to the default
value κ = 1 . A popular way to compute C is using the
Cholesky-decomposition of Σ. The non-linear function f :
Rn 7→ Rm is applied to the points

ζi = f(ξi) (11)

giving 2n+ 1 points from which the new mean and covari-
ance are computed

µf =

2n∑
i=0

wiζi ,

Σf =

2n∑
i=0

wi(ζi − µf )(ζi − µf )> .

(12)

For the PNEC we project the 2D covariance Σ2D feature in
the image plane onto the unit-sphere in 3D.

Pinhole Cameras. The unscented transform for pinhole
cameras is straight forward. We have the feature uncertainty
matrix in the image plane Σ2D and can easily compute its
Cholesky-decomposition. We sample 5 points around the
feature position in the image and project them through the

non-linear function f(ξ). The function f(ξ) = h(g(ξ))
consist of the unprojection function

g(ξ) = Kinv

ξ1ξ2
1

 (13)

of the pinhole camera with the inverse camera matrixKinv

and the projection onto the unit sphere

h(x) =
x

‖x‖
. (14)

Omnidirectional Cameras. The unscented transform
for omnidirectional cameras is a bit more involved. For
omnidirectional cameras image points are not on a plane
but a sphere. The covariance matrix Σspherical correspond-
ing to a point are therefore tangential to this sphere. They
are living in a 2D subspace in a 3D space, the 3 × 3 co-
variance matrices are not positive definite and therefore the
Cholesky-decomposition is not defined for them. Instead,
we use the Cholesky-decomposition of a 2 × 2 sub-matrix
CC> = Σ2D of the form

R>
(

Σ2D 0
0> 0

)
R = Σspherical . (15)

A matrixR that gives us such a form is the rotation matrix

R =
1

‖µ‖

‖µ‖ −
µ2
1

‖µ‖+µ3
− µ1µ2

1+µ3
−µ1

− µ1µ2

1+µ3
‖µ‖ − µ2

2

‖µ‖+µ3
−µ2

µ1 µ2 µ3

 ,

(16)
that aligns the feature point with the z-axis and the covari-
ance matrix with the xy-plane, where µi denotes the ith el-
ement of µ.

The 5 points for the unscented transform are selected us-
ing

ξ0 = µ ,

ξi,i+n = µ±
√
n+ κR>

(
Ci

0

)
i = 1 . . . n .

(17)

Unlike the pinhole camera we do not need a unprojection
function and the non-linear function is given by

f(ξ) =
ξ

‖ξ‖
. (18)

E. Geometric Interpretations of the PNEC
As we explain in the main paper, the PNEC incoorper-

ates uncertainty into the NEC and leads to a Mahalanobis-
distance-based energy function. In this section, we take an
in-depth look into the derivation of the energy function as a
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Mahalanobis distance and give a geometric reasoning why
the regularization removes the singularity of the PNEC.

In the main paper, we look at the univariate distribution
of an error residual with its variance σ2

i that leads to the
PNEC energy function. Another way to derive the same en-
ergy function is by looking at the distribution of an epipolar
plane normal vector ni. It has a Gaussian distribution with
the covariance Σn,i. Using the formulation of the Maha-
lanobis distance to a plane by Schindler and Bischof [8] we
can derive the distance of this normal vector to the epipolar
normal plane. The idea of Schindler and Bischof is to apply
a whitening transform to the error distribution and the plane
and compute the Euclidean distance of the new center to the
transformed plane.

For the PNEC we have the epipolar normal plane de-
scribed in homogeneous coordinates by

p =

(
t
0

)
(19)

and the covariance with its singular value decomposition

Σn,i = R>i V iRi, V i = diag(a2, b2, c2) (20)

from which we can derive the whitening transform. For the
plane it is given by

q =

(
V

1/2
i Ri 0
−n>i 1

)
p =

(
V

1/2
i Rit
−n>i t

)
. (21)

The original Mahalanobis distance is now given by the dis-
tance of the origin to the transformed plane

dM =
q4√

q21 + q22 + q23
(22)

giving us

d2M =
|n>i t|2

t>R>i V
1/2
i V

1/2
i Rit

=
|n>i t|2

t>Σn,it
(23)

for the PNEC, which is the residual of the energy function.
Using the geometric interpretation of the PNEC as a Ma-

halanobis distance of the normal vector to the epipolar nor-
mal plane we can now explain the singularity of the PNEC
geometrically. Since ni = f i ×Rf

′
i is derived as a cross

product its distribution is only a 2D plane embedded in 3D
space. The 2D plane is described by its normal vector f i
(note that f i is not random while f ′i is random). There-
fore, the Mahalanobis distance is only defined for points in
this 2D subspace. In all configuration except for f i = t
the 2D plane and the epipolar normal plane intersect in a
single line giving a meaningful Mahalanobis distance. The
proposed regularization is equivalent to removing the 2D
subspace constraint on the Mahalanobis distance by giving
the covariance matrix full rank due to

t> (Σn,i + cI3) t = t>Σn,it+ ct>I3t

= t>Σn,it+ c .
(24)

F. Directional Limit at the Singularity
In this section, we further investigate the singularity of

the PNEC. Since no limit for the singularity exists, we
present its directional limit. To this end, we use spherical
coordinates to approach the singularity on the unit-sphere.
For convenience we restate the PNEC weighted residual

e2P,i(R, t) =
e2i
σ2
i

=
|t>(f i ×Rf

′
i)|2

t>f̂ iRΣiR
>f̂ i

>t
. (25)

Since the limit
lim
f i→t

e2P,i(R, t) (26)

does not exist, we look at the directional limit of the singu-
larity. Without loss of generality we choose

t =

0
0
1

 . (27)

We can now approach the translation on the unit sphere by
choosing an arbitrary vector

f i(θ, φ) =

 sin θ sinφ
− sin θ cosφ

cos θ

 (28)

on the unit sphere in spherical coordinates with radius 1.
Letting θ → 0 implies f i → t. We can rewrite the residual
as

e2P,i(R, t) =
|(t× f i)>Rf

′
i|2

(t× f i)>RΣiR>(t× f i)
(29)

and the directional limit is given by

lim
θ→0

|(t× f i(θ))>Rf
′
i|2

(t× f i(θ))>RΣiR>(t× f i(θ))
. (30)

The cross product is given by

t× f i(θ) = − sin θ

cosφ
sinφ

0

 = − sin θk (31)

with k being the unit length vector orthogonal to f i and t.

lim
θ→0

|(t× f i(θ))>Rf
′
i|2

(t× f i(θ))>RΣiR>(t× f i(θ))

= lim
θ→0

sin2 θ

sin2 θ

|k>Rf ′i|2

k>RΣiR>k

=
|k>Rf ′i|2

k>RΣiR>k

(32)

From the above equation we can clearly see that the direc-
tional limit for θ → 0 exists and depends on the direction
k. Consequentially, the limit in Eq. 26 does not exist.
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(a) 50 points (b) 100 points

(c) 500 points (d) 1000 points

Figure 3. Fibonacci lattice point generation for different number
of points. See Alg. 2 for more details.

G. SCF
We show the SCF iteration and the proposed globaliza-

tion strategy in Alg. 1. For convenience we restate the
PNEC energy function

EP (R, t) =
∑
i

e2i
σ2
i

=
∑
i

|t>(f i ×Rf
′
i)|2

t>f̂ iRΣiR
>f̂ i

>t
(33)

that we optimize over the translation t using the SCF iter-
ation. The Fibonacci-lattice-based point generation on the
sphere in R3 is given in Alg. 2.

The main step of the SCF iteration is the construction of
the E-matrix [2, Eqn. (2.3)], which is a 3 × 3 symmetric
matrix in our case

E(R, t) =
∑
i

wi ·
(
t>Bit ·Ai − t>Ait ·Bi

)
,

Ai = f̂ iRf
′
i(f̂ iRf

′
i)
> ,

Bi = f̂ iRΣiR
>f̂ i

> + cI3 ,

wi = (t>Bit)
−2 ·

∏
j

t>Bjt .

(34)

In the SCF iteration the eigenvector corresponding to the
largest eigenvalue is computed and thus, if necessary for
numerical reasons, the weights can be scaled by a constant.
Specifically, we use weights of the form wi = (t>Bit)

−2

because the product
∏
j t
>Bjt is common to all weights

and leads to numerical issues. Due to the regularization,
the matrices Bi are positive definite, which is required for
the SCF iteration. For experiments on synthetic data that
follow [7] and KITTI experiments the same regularization
as for the overall PNEC optimization can be used for c. This
ensures, that the matricesBi are positive definite.

Algorithm 1: SCF Optimization w/ Globalization
Data: Fixed rotation R̃

Result: Optimized translation t∗

1 Sample the Fibonacci Lattice with K points (cf. Alg. 2)
{t̄k}k ← FibonacciLattice(K)

2 Select the starting point with minimal Energy (cf. Eq. 33)
t0 ← arg mink EP (R̃, t̄k)

for s← 1 to S do
3 Construct the E-matrix (cf. Eq. 34)

Es ← E(R̃, t̄s−1)

4 Eigendecompose Es ∈ R3×3 using Es = E>s
λ1, λ2, λ3,v1,v2,v3 ← eig(Es) s.t. λ1 ≤ λ2 ≤ λ3

5 Set ts as the eigenvector with maximal eigenvalue
ts ← v3

end

Algorithm 2: Fibonacci Lattice Point Generation
Data: Number of points K
Result: Points on the sphere {t̄k = (xk, yk, zk)}k

1 Compute the golden ratio angle
φ← π · (3−

√
5)

for k ← 1 to K do
2 Compute the kth y-coordinate yk ∈ [−1, 1]

yk ← 1− 2 · k−1
K−1

3 Compute the radius in the x-z-plane

rxz ←
√

1− y2k

4 Compute the remaining coordinates xk , zk for t̄k
xk ← rxz · cos((k − 1)φ)

zk ← rxz · sin((k − 1)φ)

end

H. Hyperparameters

In the following we give an overview over the parame-
ters we use for the simulated experiments and on the KITTI
dataset [6]. We show both the parameters used in the PNEC
optimization and the parameters used to generate the KLT
tracks.

For PNEC we use: Alg. 1 iterations is the number of
iterations we use in Alg. 1 of the main paper before we start
the least squares refinement; SCF iterations is the num-
ber of iteration we run Alg. 1 presented in this supplemen-
tary material in each optimization over t; Fibonacci lat-
tice points is the number of points we generate using the
Fibonacci lattice; regularization is the regularization con-
stant we proposed to avoid the singularities of the PNEC.

For the KLT parameters the parameters are: pattern size
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Hyperparameter Simulated KITTI

Alg. 1 iterations 10 10
SCF itertations 10 10
Fibonacci lattice points 500 500
regularization 10−10 10−13

KLT parameters

pattern size 52
grid size 30
pyramid-levels 4
optical flow iterations 40
optical flow max recovered
distance

0.04

RANSAC parameters

iterations 5000
threshold 10−6

Table 1. Parameters used for our experiments.

the pattern layout used by the KLT tracker1; grid size is
the length of each square for which a track is extracted;
pyramid-levels is the number of pyramid levels over which
tracks are tracked, where the scale factor between each
pyramid level is 2; optical flow iterations is the number
of iterations tracking is done on each pyramid level; opti-
cal flow max recovered distance is the maximum distance
a track can have from its original position after forward-
backward tracking (otherwise it is discarded).

For RANSAC2 the parameters are: iterations the max-
imum number of iterations for the RANSAC scheme;
threshold the threshold for a point to be classified as an
inlier.

H.1. Hyperparameter Study

Tab. 2 shows a the results for different hyperparameter
settings on the synthetic data with anisotropic and inhomo-
geneous noise for different noise levels. We compare the
PNEC and the NEC from the main paper and the following:
sampling the Fibonacci lattice only on the first iteration of
the optimization; only doing 3 iterations of the SCF algo-
rithm after the first iteration of the optimization; sampling
5000 points with the Fibonacci lattice; increasing the regu-
larization to c = 10−5 and c = 10−0. The changes to the
Fibonacci lattice and the SCF algorihm lead to the same re-
sults for the PNEC. Increasing the regularization leads to
worse results especially in the rotation estimation. A higher
regularization leads to a more equal weighting of the resid-
uals, the PNEC approaches the orignal NEC.

1see include/basalt/optical flow/patterns.h in the
implementation of [10]

2see OpenGV for details of the RANSAC scheme

(a) isotropic homogeneous (b) isotropic inhomogeneous

(c) anisotropic homogeneous (d) anisotropic inhomogeneous

Figure 4. Illustration of different noise types based on Brooks et
al. [4].

I. Experiments with Simulated Data
We present the results for the simulated experiments for

other noise types. Fig. 4 shows an illustration of the noise
type classification by Brooks et al. [4] on which we base our
experiments. As for the anisotropic inhomogonoeous noise
we present the average results for isotropic homogonoeous,
isotropic inhomogonoeous, and anisotropic homogonoeous
noise over 10 000 random instantiations.

The covariance matrices for the simulated experiments
are generated using the following parameterization

Σ2D = sRα

(
β 0
0 1− β

)
R>α (35)

with a scaling factor s, an anisotropy term β, and a 2D ro-
tation matrix

Rα =

(
cosα − sinα
sinα cosα

)
. (36)

The parameters for isotropic homogeneous noise are s = 1,
β = 0.5, and α = 0. For isotropic inhomogeneous noise
they are β = 0.5, α = 0, and s is sampled uniformly
between 0.5 and 1.5 for each covariance. For anisotropic
homogeneous noise s = 1, β is sampled uniformly be-
tween 0.5 and 1 once for each experiment, and α is sam-
pled uniformly between 0 and π for each covariance. For
anisotropic inhomogeneous noise all parameters are uni-
formly sampled for each covariance, s between 0.5 and 1.5,
β between 0.5 and 1, and α between 0 and π.

I.1. Omnidirectional Cameras

Fig. 5, Fig. 6, and Fig. 7 show the results for omnidi-
rectional cameras. The PNEC consistently achieves better
results than the NEC on all noise types. Notable is that even
for isotropic homogeneous noise the PNEC ouperforms the

6
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OMNIDIRECTIONAL PINHOLE

W/ T W/O T W/ T W/O T

Noise level [px] 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
Metric [degree] erot et erot et erot et erot erot erot erot et erot et erot et erot erot erot

PNEC 0.08 1.29 0.12 1.60 0.14 1.66 0.09 0.13 0.15 0.20 2.06 0.28 2.38 0.34 2.54 0.15 0.21 0.25
NEC 0.11 1.90 0.15 2.10 0.17 2.11 0.11 0.15 0.18 0.25 2.41 0.34 2.78 0.41 2.91 0.19 0.25 0.29 +24 %
Fib. lattice only for 1st 0.08 1.30 0.12 1.60 0.14 1.66 0.09 0.13 0.15 0.20 2.05 0.28 2.37 0.34 2.56 0.15 0.21 0.25 0 %
Only 3 SCF iter. after 1st 0.08 1.32 0.12 1.60 0.14 1.68 0.09 0.13 0.15 0.20 2.05 0.28 2.37 0.34 2.55 0.15 0.21 0.25 0 %
Fib. lattice 5000 pts 0.08 1.29 0.12 1.60 0.14 1.66 0.09 0.13 0.15 0.20 2.06 0.28 2.38 0.34 2.54 0.15 0.21 0.25 0 %
Reg. ↑ (c = 10−5) 0.10 1.23 0.14 1.54 0.16 1.66 0.10 0.14 0.17 0.24 2.32 0.33 2.91 0.40 3.11 0.12 0.16 0.19 +6 %
Reg. ↑ ↑ (c = 100) 0.10 1.23 0.14 1.54 0.16 1.66 0.10 0.14 0.17 0.24 2.32 0.33 2.91 0.40 3.11 0.12 0.16 0.19 +6 %

Table 2. Hyperparameter study on the synthetic data. We compare: the PNEC and the NEC from the main paper; sampling the Fibonacci
lattice only on the first iteration of the optimization; only doing 3 iterations of the SCF algorithm after the first iteration of the optimization;
sampling 5000 points with the Fibonacci lattice; increasing the regularization to c = 10−5 and c = 10−0. The changes to the Fibonacci
lattice and the SCF algorihm lead to the same results for the PNEC. Increasing the regularization leads to worse results especially in the
rotation estimation. A higher regularization leads to a more equal weighting of the residuals, the PNEC approaches the orignal NEC.

NEC. This experiment shows that the geometry of the prob-
lem has an influence on the energy function. Although all
covariances are equal in the image plane the same does not
hold for the variance of each residual. The experiments for
isotropic inhomogeneous and anisotropic homogeneous
noise show the benefit the differnent sizes and shape of co-
variances has, respectively. Both widen the gap between the
PNEC and NEC.

I.2. Pinhole Cameras

Fig. 8, Fig. 9, and Fig. 10 show the results for pinhole
cameras. They show similar results to the omnidirectional
cameras.

J. Energy Function Results
Fig. 11 shows the median energy values for all the simu-

lated experiments presented in the main paper and this sup-
plementary material. We show the median values instead of
the average due to the volatility of the energy function.

K. Anisotropy Experiments
As the results of the previous experiment shows, the per-

formance of the PNEC is dependent on the noise type. The
following experiments show the effect the anisotropy of the
noise has on the PNEC optimization. The setup for this ex-
periment is the same as for the previous experiments, apart
from the noise generation. While the noise level stays con-
stant (1.0 [pix]), inhomogenous noise is sampled over dif-
ferent levels of anisotropy β (β = 0.5: isotropic, β = 1.0:
anisotropic). Fig. 12 and Fig. 13 show the results for omni-
directional and pinhole cameras, respectively. We repeated
the experiments for pure rotation. An increasing level of
anisotropy is beneficial for our PNEC, increasing the gap
between the NEC and the PNEC noticeably. Additionally,

the results show that our PNEC outperforms the NEC even
for isotropic noise.

L. Offset Experiments
The previous synthetic experiments showed the robust-

ness of our PNEC against different noise intensities. For
these experiments, we assumed perfect knowledge about
the noise distribution. Fig. 14 shows the influence of
wrongly estimated noise parameters on the performance of
our PNEC. For these experiments we generated random
pinhole camera problems but gave the PNEC covariance
matrices with a random offset on the noise parameters. The
offset is uniformly sampled with a deviation up to a certain
percentage of the range of the noise parameters α, β, s, re-
spectively. The results show that the PNEC performs better,
the more accurate the covariance matrices are. However,
our PNEC outperforms the NEC even with noise parame-
ters that are off by up to 25%.

M. KITTI experiments
In the following we present the results on the KITTI

dataset in more detail. In Sec. M.1 we compare the NEC
and PNEC in their translation estimation as well as the con-
sistency of their results. Sec. M.2 gives an ablation study
on the KITTI dataset to evaluate the performance of both
stages of our optimization scheme.

M.1. Translation and Variance

Fig. 15 shows the mean error and standard deviation of
the KLT-NEC and the KLT-PNEC on the KITTI dataset
for the RPE1, the RPE1 and et metrics. We chose to omit
seq. 01 since neither tracks nor covariances provided by the
KLT tracker are correct. The results show that our PNEC
not only achieves better result on average in the rotation
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estimation but its results are more consistent for most se-
quences. The translation estimation for both methods is
very similar.

M.2. Ablation study

Tab. 3 shows the results for the ablation study on the
KITTI dataset. We compare: KLT-NEC; NEC followed
by the 2nd stage of our optimization scheme (KLT-NEC
+ PNEC-JR); only the 1st stage (KLT-PNEC w/o JR); only
the 2nd stage (KLT-PNEC only JR); both stages of the opti-
mization (KLT-PNEC). Additionally we included the MRO
results as a baseline. For KITTI all methods are initial-
ized with a constant velocity motion model. The full op-
timization with both stages gives the best results on most
sequences and performs the best on average. Both stages
on their own achieve considerably worse results. Fig. 16
shows qualitative trajectories for KLT-PNEC only JR and
KLT-PNEC of five runs on seq. 07 of the KITTI dataset.
While our full PNEC achieves consistent results over all
runs, KLT-PNEC only JR results are considerably more
volatile. The joint refinement is prone to local mimima due
its least-squares formulation. This leads to a few poor ro-
tation estimations that worsen the performance on the se-
quence drastically.
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Figure 5. isotropic homogeneous: Experiments for omnidirectional cameras. The PNEC outperforms the NEC for experiments with
translation, without translation both methods perform similar. The results show that next to the shape of the covariances the geometry also
influences the variance of the residuals, resulting in better rotation estimation of the PNEC.
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Figure 6. isotropic inhomogeneous: Experiments for omnidirectional cameras. The PNEC outperforms the NEC for experiments with
translation, without translation the PNEC only performs slightly better. As expected the inhomogeneity of the covariance matrices is
beneficial for the PNEC.
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Figure 7. anisotropic homogeneous: Experiments for omnidirectional cameras. The PNEC outperforms the NEC for experiments with
translation and without translation. This experiment shows the importance the directional information of the anisotropic covariances
provides the PNEC. The performance difference is significantly bigger than for isotropic noise.
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Figure 8. isotropic homogeneous: Experiments for pinhole cameras. Similar to omnidirectional cameras the PNEC outperforms the NEC
even for isotropic homogeneous noise. However, for purely rotational experiments the PNEC performs slightly worse for experiments with
a high noise level.
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Figure 9. isotropic inhomogeneous: Experiments for pinhole cameras. Similar to omnidirectional cameras the inhomogeneity helps the
PNEC. However, for purely rotational experiments both methods performs similar for experiments with a high noise level.
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Figure 10. anisotropic homogeneous: Experiments for pinhole cameras. Similar to omnidirectional cameras the directional information
of the anisotropic covariances helps the PNEC significantly, especially in the zero translation case.

MRO [5] KLT-NEC KLT-NEC KLT-PNEC KLT-PNEC KLT-PNEC
+ PNEC-JR w/o JR only JR (Ours)

Seq. RPE1 RPEn RPE1 RPEn RPE1 RPEn RPE1 RPEn RPE1 RPEn RPE1 RPEn

00 0.360 8.670 0.125 5.922 0.139 5.392 0.142 9.594 0.210 14.929 0.119 3.429
02 0.290 16.030 0.093 6.693 0.111 8.781 0.100 10.259 0.077 5.271 0.122 9.687
03 0.280 5.470 0.073 2.728 0.063 1.717 0.065 2.022 0.057 1.464 0.059 1.411
04 0.040 1.080 0.041 0.619 0.038 0.477 0.038 0.959 0.038 0.448 0.038 0.463
05 0.250 11.360 0.079 4.489 0.082 3.659 0.094 6.313 0.078 6.563 0.070 3.203
06 0.180 4.720 0.073 3.162 0.072 2.988 0.054 1.577 0.043 2.366 0.042 2.322
07 0.280 7.490 0.105 4.640 0.096 2.092 0.135 7.592 0.545 25.381 0.074 2.065
08 0.270 9.210 0.070 5.523 0.084 5.004 0.072 5.973 0.127 27.343 0.060 3.347
09 0.280 9.850 0.088 3.533 0.088 2.699 0.079 2.783 0.202 23.842 0.080 3.514
10 0.380 13.250 0.073 3.959 0.075 4.155 0.077 4.679 0.177 15.778 0.072 4.094

mean 0.261 8.713 0.082 4.127 0.085 3.696 0.086 5.175 0.155 12.338 0.074 3.354

Table 3. Ablation study on the KITTI dataset. We compare: KLT-NEC; NEC followed by the 2nd stage of our optimization scheme
(KLT-NEC + PNEC-JR); only the 1st stage (KLT-PNEC w/o JR); only the 2nd stage (KLT-PNEC only JR); both stages of the optimization
(KLT-PNEC). Additionally we included the MRO results as a baseline. For KITTI all methods are initialized with a constant velocity
motion model, i.e. with the relative rotation generated for the previous frame pair by the same method. The results show that only both
stages of our optimization achieve the most consistent and best results on average. Using only one stage performs worse. Especially the 2nd
stage struggles on most sequences. While it has the best results on some sequences on others is performs the worst often by a wide margin
in the RPEn metric. The joint refinement is dependent on a good initialization, which is provided by the 1st stage of our optimization.
KLT-NEC + PNEC-JR shows that using the NEC is not enough to provide the best results.
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Figure 11. The energy function values for all simulated experiments. We present the median instead of the average value for the energy
function, due to its volatility. The first column shows the experiments for isotropic homogeneous noise, the second for isotropic inhomoge-
neous noise, the third for anisotropic homogeneous noise, and the fourth for anisotropic inhomogeneous noise. The first two rows show the
experiments for omnidirectional cameras with and without translation, respectively. The last two rows show the experiments for pinhole
cameras with and without translation, respectively. The results show the effectiveness of our proposed optimization scheme to minimize
the energy function.
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Figure 12. Influence of the degree of anisotropy for omnidirectional cameras. Results averaged of 10 000 random problems with varying
degree of anisotropy. While a higher anisotropy is beneficial for our PNEC it outperforms the NEC for isotropic noise (β = 0.5) as well.
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Figure 13. Influence of the degree of anisotropy for pinhole cameras. Results are similar as for omnidirectional cameras.
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Figure 14. Influence of wrongly estimated noise parameters. Our PNEC is given covariance matrices with wrong noise parameters (see
Sec. I) for the optimization. Results are averaged over 10 000 random problems over different levels of maximum parameter offset. Our
PNEC outperforms the NEC even if the noise parameters have an offset of up to 25%.
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Figure 15. Mean error with standard deviation over 5 runs of the KITTI dataset. Comparison between the NEC and our PNEC shows that
not only does our PNEC better results on average for both the RPE1 (see Fig. 15a) and the RPEn (see Fig. 15b) but the results are often
more consistent. The translational error for both methods are very similar on average.
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Figure 16. Qualitative evaluation for KITTI seq. 07. The trajectories are generated with the estimated rotations of PNEC only JR and our
PNEC, respectively, and are combined with the ground truth translations for visualization purposes. The trajectories show the volatility
of the PNEC only JR. While the rotations estimated with only the joint refinement are good over most of the sequence, it is prone to
local minima due to the least-square formulation. A handful of bad rotation estimations, mainly located in corners, lead to an overall
poor performance on the whole sequence. The first stage of the proposed optimization scheme overcomes this issue by providing a good
initialization for the joint refinement.
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