
1. Supplementary Section
In this section we mention interesting observations and the training details which were used to report the experiments in the

main paper. In addition to this, we also discuss the training schedule and additional experiments (for example transferability
experiment on CIFAR100) which we could not fit in the main paper due to space constraints.

1.1. Underreported Baselines

Methods 10% 20% 30% 40% Model

CIFAR10

QBC 74 82.5 - - DenseNet121
VAAL 61.35 68.17 72.26 75.99 VGG16
Coreset 60 68 71 74 VGG16
RSB(ours) 69.16 77.34 80.91 82.05 VGG16
RSB-SR(ours) 82.16 85.09 89.43 91.16 VGG16
LLAL 81 87 - - ResNet18
CoreGCN 80 85.5 - - ResNet18
TA-VAAL 81 87.5 - - ResNet18
RSB-SR(ours) 84.69 88.45 89.98 92.29 ResNet18

Table 1. Reported Random Baseline vs our RSB results. We denote RSB results with strong regularization by RSB-SR.

In this section we analyze our random baseline (RSB) results with the random baselines reported by published methods
in AL literature. From Tab. 1, it is evident that our strongly-regularized settings along with hyper-parameters tuned using
AutoML yields strong baseline.

1.2. Training Algorithm

Algorithm 1 AL Training Schedule

1: Input ALiter, Budget size k and Oracle, A
2: Split D → {Tr, Ts, V }
3: Split Tr → {L0

0, U
0
0 }

4: Train a base classifier, B using only L0
0

5: ϕ = B
6: while i ∈ {0 . . . ALiter} do
7: sample {xj}kj=1 ∈ U i

0 using Ψ(Li
0, U

i
0, ϕ)

8: {xj , yj}kj=1 ← {xj ,A(xj)}kj=1

9: Li
0 ← Li

0 ∪ {xj , yj}kj=1

10: U i
0 ← U i

0 \ {xj , yj}kj=1

11: ϕ←Initialize randomly
12: while convergence do
13: Train ϕ using only Li

0

14: end while
15: end while

For all reported experiments in the main paper we followed the algorithm described in Algorithm 1

1.3. Auto-ML Hyper-parameters

Here we enlist our hyper-parameters tuned using AutoML. To implement AutoML we used optuna framework extensively
in our codebase.

• Learning rate: log-scale in range [10−5, 10−2)

• Weight Decay : log-scale in range [10−8, 10−3)



• Batch Size: Categorical values from [8,16,32....1024]

• Optimizer: Categorical values from [SGD, ADAM]

• Number of Transformation in randaug (RA N) : Categorical values from [1,2,3,....15]

• Magnitude of Transformation in randaug (RA M) : Categorical values from [1,2,3,....8]

1.4. Transferability Experiment

We mainly used three different architectures for classifier model i.e. VGG16, ResNet18 (R18) and Wide ResNet-28-2
(WRN)1. The VGG network was used as a source model whereas other two networks are used for target models. The
results for CIFAR100 are reported in Table 2 which are achieved when we replace all the relu activations with leaky relu
(negative slope set to 0.2) following (Oliver et al., 2018). We found CIFAR100 results to be significantly better with leaky
relu activation, however, the same change does not affect the performance of CIFAR10.

Source Model Target Model

VGG16 WRN-28-2 R18-SR
Methods ↓ 20% 30% 40% 20% 30% 40% 20% 30% 40%

Random 46.72 50.63 55.27 47.87 56.53 57.84 60.17 64.8 69.33
Coreset 48.2 49.5 56.99 51.25 58.39 60.56 58.76 65.40 69.12
VAAL 39.32 52.17 55.73 49.13 57.72 55.71 59.76 61.36 67.15
QBC 46.53 53.16 55.54 49.02 53.51 57.05 61.06 66.92 69.83

Table 2. Transferability experiment on CIFAR100 dataset where source model is VGG16. The reported numbers are test accuracies
corresponding to the best trained on CIFAR100 dataset. For best model hyper-parameters we perform random search over 50 trials(so for
4 AL iterations; we train 200 models in total). For this experiment we replace all relu activations with leaky relu (negative slope set to 0.2).

1.5. Optimizer settings

Different AL studies have reported different optimizer choices in their experiments. In this light, we analyze the optimizer
chosen by AutoML and we analyze it on CIFAR10. The results are present in Table 3 of supplementary section. Contrary to
the previous works where the optimizer is fixed in advance, we found that both Adam and SGD can sometimes work better
than the other.

Optimizers 20% 30% 40%

CIFAR10

SGD 4 3 5
ADAM 10 11 9

CIFAR100

SGD 10 10 9
ADAM 4 4 5

Table 3. Analyzing best optimizer chosen by AutoML during random search over 50 trials for all the AL methods (VGG16 classifier) on
CIFAR 10. As we implement 7 AL methods in both standard and strongly-regularized settings; so at each AL iteration we have a total of
14 best optimizers chosen.

1All Model definitions in AL Toolkit has been provided as a supplementary material



1.6. Noisy Oracle Experiments

In conjunction to RSB baselines (presented in main paper), we report performance of AL methods under noisy labels in
active sets. The results are reported in Tab. 4 where we make the following observations: (i) it is quite evident that strongly-
regularized model improves performance even in label corruptions scenarios. (ii) No AL method consistently outperforms the
simple RSB baseline. (iii) Strong-regularization help reduce the performance difference between RSB and best AL method
at a particular data split.

without
strong-regularization

with
strong-regularization

Methods ↓ 10% 20% 30% 40% 10% 20% 30% 40%

Noise: 10%

RSB 69.16 72.08 76.62 80.88 82.16 84.96 86.06 89.13
Coreset 69.16 75.97 80.07 82.78 82.16 82.99 88.14 90.31
DBAL 69.16 76.98 80.5 84.4 82.16 85.04 88.04 90.44
BALD 69.16 75.29 80.24 84.04 82.16 82.15 88.24 89.45
VAAL 69.16 73.85 77.35 79.82 82.16 85.32 86.57 89.53
QBC 69.16 75.64 77.87 80.53 82.16 85.25 87.39 88.68
UC 69.16 75.94 80.42 81.92 82.16 82.61 85.19 88.62

Noise: 20%

RSB 69.16 69.42 75.89 79.61 82.16 77.39 85.9 85.12
Coreset 69.16 71.13 76.44 80.07 82.16 80.05 88.05 88.32
DBAL 69.16 71.26 76.24 82.2 82.16 81.31 83.67 91.14
BALD 69.16 70.34 77.18 79.86 82.16 85.26 88.52 91.21
VAAL 69.16 70.13 74.94 76.42 82.16 82.39 82.66 88.31
QBC 69.16 71.18 76.52 77.78 82.16 83.17 84.68 85.62
UC 69.16 71.53 75.48 78.48 82.16 84.57 83.00 88.42

Table 4. Mean accuracy on noisy oracle experiments on CIFAR10 with (n=3) repeated trials where the best hyper-parameters were found
using the random search over 50 trials. We note that the noise is added in active sets drawn by AL methods. The strong-regularization
experiments involve SWA and RA techniques.

1.7. Overlap in the active set

For the interested readers we plot the overlap in CIFAR10 active set sampled in the first AL iteration. As we do five runs
for a labeled set partition, we therefore report the average overlap in Figure 1.

Methods ↓ 10% 15% 20% 25%

without RA + SWA

RSB 57.89 ±0.13 61.55 ±0.32 64.51 ±0.13 66.52 ±0.2
Coreset 57.89 ±0.13 62.36 ±0.19 65.42 ±0.19 67.8 ±0.23
VAAL 57.89 ±0.13 62.87 ±1.18 65.11 ±0.74 67.08 ±0.42

with RA + SWA

RSB 60.1 ±0.09 64.59 ±0.62 67.14 ±0.18 69.2 ±0.11
Coreset 60.1 ±0.09 64.98 ±0.50 67.97 ±0.25 70.12 ±0.13
VAAL 60.1 ±0.09 64.88 ±0.53 67.45 ±0.26 69.37 ±0.08

Table 5. Effect of RA and SWA on ImageNet where annotation budget is 5% of
training data. Reported results are averaged over 3 runs.

Figure 1. Overlap in CIFAR10 active set which is sam-
pled during the first AL iteration.



1.8. Annotation Batch Size

Here we present the results for CIFAR10 and CIFAR100 in Table 6 for the experiment where annotation batch size is 5%
relative to training data.

Methods ↓ 15% 20% 25% 30% 35% 40%

CIFAR10

RSB 74.30 ± 0.88 78.27 ± 0.47 79.79 ± 0.64 81.86 ± 0.60 81.50 ± 0.45 83.21 ± 1.14
Coreset 74.56 ± 0.70 75.11 ± 0.92 81.23 ± 0.27 82.58 ± 0.57 83.9 ± 0.70 84.30 ± 0.56
DBAL 73.58 ± 0.81 79.33 ± 0.61 80.27 ± 1.10 81.78 ± 1.47 83.30 ± 0.75 83.86 ± 0.47
BALD 75.43 ± 0.63 79.19 ± 0.51 78.29 ± 0.63 81.69 ± 0.38 83.42 ± 1.54 85.23 ± 0.41
VAAL 74.07 ± 2.11 78.28 ± 1.00 78.88 ± 0.97 81.07 ± 0.61 80.98 ± 0.79 81.72 ± 2.33
QBC 72.63 ± 2.14 75.07 ± 2.07 76.95 ± 1.52 80.72 ± 0.34 81.76 ± 1.03 83.53 ± 0.59
UC 76.90 ± 1.12 78.14 ± 0.79 80.75 ± 0.62 81.47 ± 0.53 84.60 ± 0.71 83.13 ± 0.64

CIFAR100

RSB 35.15 ± 0.55 43.10 ± 0.46 49.33 ± 0.73 52.24 ± 0.56 51.76 ± 1.29 55.49 ± 0.64
Coreset 43.19 ± 0.65 42.58 ± 0.32 46.85 ± 0.83 52.47 ± 0.58 52.48 ± 0.93 57.45 ± 0.54
DBAL 35.83 ± 0.83 32.54 ± 1.92 42.93 ± 6.69 52.27 ± 3.59 54.58 ± 1.18 57.68 ± 0.46
BALD 37.55 ± 0.70 43.86 ± 0.48 49.79 ± 0.29 51.96 ± 0.81 54.75 ± 0.63 57.20 ± 0.90
VAAL 36.75 ± 1.36 37.05 ± 1.78 47.62 ± 1.07 47.20 ± 0.25 53.61 ± 0.44 52.87 ± 0.63
QBC 38.91 ± 0.70 43.57 ± 0.62 47.76 ± 0.61 51.16 ± 0.49 54.06 ± 0.33 56.51 ± 0.42
UC 36.52 ± 0.55 41.23 ± 0.89 50.59 ± 0.50 51.42 ± 0.42 55.14 ± 0.97 53.15 ± 0.36

Table 6. Mean Accuracy and Standard Deviation on CIFAR10/100 test set with annotation size as 5% of training set. Results reported are
averaged over 5 runs where hyper-parameters are tuned in the first run using AutoML random search over 50 trials.

1.9. Unexplained performance degradation

In this section we discuss an counter-intuitive observation seen during AL iterations i.e. even with the increase in the
labeled data, we sometimes observed the model performance (classification accuracy) degrading. More importantly, this
observation was seen across different AL methods and datasets. For example on CIFAR10 from 20% to 30% AL cycle, the
uncertainty method degrades its performance by 0.54% (refer Tab. 8). Similarly on CIFAR100 and CIFAR10 from 30%
to 35% AL cycle, the coreset and vaal method degrades its performance by 0.01% and 0.09% respectively (refer Tab. 6).
Infact during our initial experiments without AutoML and strong-regularization, we observed such behaviour more frequent
along-with high variance in accuracy and inconsistent ordinal ranking (by accuracy) across fractions of the data. These
observations led us to employ AutoML and strong regularization, which helped reduce variance. We hypothesize that the
performance drop could occur through a suboptimal active set selection by the AL method, as we do not interfere with active
sets or settings used for AutoML (best of 50 experiments).

2. Additional Results
In the last we present the exact accuracies which were used to plot the Figure 1 in main paper. Tab. 7 to Tab. 11 reports

the test accuracies for CIFAR10 dataset and Tab. 12 to Tab. 16 reports the test accuracies for CIFAR100 dataset.



Methods 20% 30% 40%

RSB 77.65 ± 0.82 81.39 ± 0.59 82.19 ± 1.55
Coreset 77.19 ± 1.93 82.58 ± 0.67 83.86 ± 1.08
DBAL 78.81 ± 1.28 80.99 ± 2.25 83.96 ± 2.01
BALD 78.35 ± 1.98 79.95 ± 1.43 84.29 ± 0.25
VAAL 75.89 ± 2.41 80.37 ± 0.34 81.75 ± 0.87
QBC 78.10 ± 0.73 80.31 ± 1.83 84.35 ± 0.64
UC 73.35 ± 4.84 81.98 ± 0.93 84.49 ± 1.18

Table 7. CIFAR10 Test Accuracy on L0
0. The base model accuracy is

69.16.

Methods 20% 30% 40%

RSB 77.85 ± 0.65 81.68 ± 0.39 82.71 ± 0.42
Coreset 77.70 ± 1.31 82.78 ± 0.90 83.79 ± 0.74
DBAL 79.28 ± 0.78 81.16 ± 0.83 85.58 ± 0.19
BALD 78.67 ± 0.39 82.95 ± 0.43 84.11 ± 0.30
VAAL 76.50 ± 0.70 79.12 ± 0.62 82.86 ± 0.69
QBC 78.22 ± 1.84 82.68 ± 0.54 85.34 ± 1.26
UC 80.03 ± 0.27 79.49 ± 0.37 85.45 ± 0.69

Table 8. CIFAR10 Test Accuracy on L0
1.The base model accuracy is

68.02.

Methods 20% 30% 40%

RSB 77.02 ± 0.71 80.50 ± 0.30 83.82 ± 0.37
Coreset 74.67 ± 0.82 81.14 ± 0.92 81.58 ± 1.19
DBAL 75.9 ± 0.25 80.58 ± 3.16 83.75 ± 0.88
BALD 76.19 ± 0.86 83.26 ± 0.36 85.39 ± 0.97
VAAL 76.88 ± 0.96 81.30 ± 0.29 82.63 ± 0.55
QBC 78.38 ± 0.79 81.39 ± 3.3 85.16 ± 0.77
UC 78.16 ± 0.85 81.80 ± 0.45 84.91 ± 0.69

Table 9. CIFAR10 Test Accuracy on L0
2. The base model accuracy is

70.34.

Methods 20% 30% 40%

RSB 75.84 ± 1.91 80.93 ± 1.20 83.17 ± 0.52
Coreset 79.42 ± 0.47 81.62 ± 0.86 83.82 ± 0.18
DBAL 79.48 ± 0.35 82.27 ± 1.23 84.74 ± 0.14
BALD 77.58 ± 0.88 82.11 ± 0.65 84.58 ± 0.42
VAAL 77.45 ± 1.21 79.38 ± 1.08 82.90 ± 0.94
QBC 78.60 ± 0.43 82.76 ± 0.92 85.54 ± 0.69
UC 76.97 ± 0.79 81.35 ± 0.82 84.65 ± 0.30

Table 10. CIFAR10 Test Accuracy on L0
3.The base model accuracy is

68.19.

Methods 20% 30% 40%

RSB 78.59 ± 0.91 81.81 ± 0.71 83.46 ± 0.18
Coreset 77.17 ± 1.82 81.37 ± 0.41 83.13 ± 1.54
DBAL 75.87 ± 0.61 83.00 ± 0.79 85.13 ± 1.25
BALD 78.49 ± 0.46 83.21 ± 0.66 85.06 ± 0.60
VAAL 73.67 ± 1.47 79.49 ± 1.27 82.98 ± 0.78
QBC 78.61 ± 1.65 83.81 ± 0.49 85.35 ± 0.82
UC 77.38 ± 1.17 81.82 ± 1.86 85.62 ± 0.30

Table 11. CIFAR10 Test Accuracy on L0
4. The base model accuracy

is 67.19.

Methods 20% 30% 40%

RSB 46.67 ± 0.30 51.43 ± 0.81 55.06 ± 0.35
Coreset 47.33 ± 0.64 49.73 ± 0.92 57.05 ± 0.40
DBAL 45.53 ± 2.33 51.04 ± 0.49 58.06 ± 0.51
BALD 47.10 ± 1.24 50.40 ± 0.88 55.65 ± 0.34
VAAL 39.73 ± 0.43 50.95 ± 0.88 55.23 ± 0.63
QBC 46.04 ± 0.57 53.20 ± 0.38 57.63 ± 0.49
UC 41.37 ± 1.29 52.97 ± 0.83 55.45 ± 0.62

Table 12. CIFAR100 Test Accuracy on L0
0. The base model accuracy

is 34.73.

Methods 20% 30% 40%

RSB 45.58 ± 0.19 53.45 ± 0.28 56.98 ± 0.31
Coreset 46.05 ± 0.46 52.04 ± 0.23 58.11 ± 0.12
DBAL 41.32 ± 0.23 52.16 ± 0.81 58.00 ± 0.68
BALD 43.57 ± 0.80 53.27 ± 0.12 56.87 ± 0.73
VAAL 42.70 ± 0.75 48.86 ± 1.61 54.81 ± 1.23
QBC 45.61 ± 0.74 53.31 ± 0.91 58.21 ± 0.22
UC 37.48 ± 0.45 53.01 ± 0.16 57.80 ± 0.09

Table 13. CIFAR100 Test Accuracy on L0
1.The base model accuracy

is 32.73.

Methods 20% 30% 40%

RSB 44.71 ± 0.64 50.01 ± 0.36 56.27 ± 0.84
Coreset 46.00 ± 0.79 53.48 ± 0.61 57.22 ± 0.69
DBAL 44.06 ± 0.39 49.29 ± 1.00 57.40 ± 0.34
BALD 46.78 ± 0.52 52.34 ± 0.90 54.97 ± 0.98
VAAL 44.75 ± 0.57 49.72 ± 0.40 55.77 ± 0.62
QBC 46.20 ± 0.72 53.15 ± 0.90 57.96 ± 0.65
UC 43.94 ± 0.60 53.75 ± 0.50 55.10 ± 0.95

Table 14. CIFAR100 Test Accuracy on L0
2. The base model accuracy

is 34.66.



Methods 20% 30% 40%

RSB 42.46 ± 0.44 52.66 ± 0.66 54.15 ± 0.43
Coreset 45.98 ± 0.83 54.34 ± 0.53 56.96 ± 0.95
DBAL 45.49 ± 0.51 48.84 ± 0.42 57.65 ± 0.46
BALD 47.21 ± 1.26 52.53 ± 0.42 55.39 ± 0.72
VAAL 44.93 ± 1.61 46.27 ± 0.72 56.65 ± 0.60
QBC 46.50 ± 0.56 53.49 ± 0.53 57.68 ± 0.51
UC 46.96 ± 0.41 53.07 ± 0.57 56.35 ± 0.79

Table 15. CIFAR100 Test Accuracy on L0
3.The base model accuracy

is 30.44.

Methods 20% 30% 40%

RSB 41.15 ± 0.89 50.61 ± 0.40 56.77 ± 0.55
Coreset 45.72 ± 0.77 52.22 ± 0.54 56.28 ± 0.45
DBAL 44.71 ± 0.57 52.33 ± 0.49 56.52 ± 0.51
BALD 40.35 ± 0.75 51.87 ± 0.60 57.40 ± 0.40
VAAL 44.86 ± 1.69 51.32 ± 1.54 53.82 ± 1.08
QBC 45.93 ± 0.46 53.12 ± 0.55 57.78 ± 0.49
UC 43.07 ± 0.74 49.89 ± 0.79 56.15 ± 0.52

Table 16. CIFAR100 Test Accuracy on L0
4.The base model accuracy

is 34.85.


