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1. Introduction
In the following, we supplement the paper with addi-

tional results, ablations and implementation details. In Sec-
tion 2 we present novel use cases for our method: auto-
matic level of detail creation from images, and appearance
aware model extraction. In Section 3, we present additional
results, including an evaluation of geometric quality, addi-
tional per-scene statistics and visual examples. Finally, in
Section 4 we provide implementation details, including effi-
cient split-sum pre-integration, regularizer terms and losses.

2. Novel applications
2.1. Level-of-detail From Images

Inspired by a recent work in appearance-driven auto-
matic 3D model simplification [5], we demonstrate level-
of-detail (LOD) creation directly from rendered images of
an object. The previous technique requires an initial guess
with fixed topology and known lighting. We generalize this
approach and showcase LOD creation directly from a set of
images, i.e., we additionally learn both topology and light-
ing. To illustrate this, we generated 256 views (with masks
& poses) from a path tracer, rendered in two resolutions:
1024×1024 pixels and 128×128 pixels, then reconstructed
the mesh, materials and lighting in our pipeline to create
two LOD levels (geometry and spatially-varying materials).
We show visual results in Figure 1 and in the supplemental
video.

2.2. Appearance-Aware NeRF 3D Model Extractor

We devise a way to extract 3D models from neural radi-
ance fields [12] (NeRF) in a format compatible with tradi-
tional 3D engines. Our pipeline for this task has three steps:

NeRF → Marching Cubes → Differentiable renderer.

The dataset consists of 256 images of the Damicornis
model [16] (with masks and poses), rendered in a path
tracer. We first train a NeRF model and extract the mesh
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Figure 1. Automatic LOD example: We generated 256 views of an
object (with masks & poses) from a path tracer in two resolutions:
1024× 1024 and 128× 128 pixels, then reconstructed the mesh,
materials and lighting to approximate LOD creation. Top: LOD
level optimized to look good at a resolution of 128×128 pixels
with 3k triangles. Bottom: LOD level optimized to look good at a
resolution of 1024× 1024 pixels with 63k triangles.

with Marching Cubes. Next, we finetune the extracted
mesh and learn materials parameters (2D textures) using our
differentiable renderer (with DMTet topology optimization
disabled), still only supervised by the images in the dataset.
The output is a triangle mesh with textured PBR materials
compatible with traditional engines. As a bonus, the silhou-
ette quality improves over the Marching Cubes extraction,
which is illustrated in Figure 2.

2.3. 3D Model Extraction with Known Lighting

We observe that the DMTet representation successfully
learns challenging topology and materials jointly, even for
highly specular models and when lit using high frequency
lighting. We illustrate this in a joint shape and material opti-
mization task with known environment lighting, optimized
using a large number of views. In Figure 3 we show two ex-
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Figure 2. Appearance-aware NeRF 3D model extraction. We show
insets of the silhouette quality before and after our optimization
pass, alongside insets of the reference and our rendered result.

PSNR↑
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 21.94 22.35 25.59 25.25 23.82
Our 22.63 25.71 28.77 21.03 25.24

SSIM↑
Scene Drums Ficus Hotdog Lego Avg
NerFactor 0.912 0.930 0.917 0.870 0.907
Our 0.915 0.961 0.932 0.846 0.911

LPIPS↓
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 0.092 0.095 0.129 0.132 0.112
Our 0.083 0.046 0.092 0.119 0.085

FLIP↓
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 0.083 0.081 0.110 0.095 0.092
Our 0.087 0.063 0.074 0.163 0.097

Table 1. Relighting quality results for the four scenes in NeR-
Factor’s synthetic dataset. The reported metrics are the arithmetic
mean over eight validation views relit with eight different light
probes.

amples from the Smithsonian 3D repository [16]. Note the
quality in both the extracted materials and geometric detail.

Our Reference

Figure 3. DMTet can accurately capture topology, even in chal-
lenging scenarios. To illustrate this, we show two examples from
the Smithsonian 3D repository [16], where we jointly learn topol-
ogy and materials under known environment lighting. The left
column shows our approximation extracted from multiple 2D ob-
servations (5000 views) and the right side a rendering of the refer-
ence model. In both examples, we start from a tet grid of resolution
1283 and optimize the grid SDF values, vertex offsets and material
parameters.

3. Results

3.1. Scene Editing and Simulation

This section supplements Section 4.1 in the main paper.
In Table 1 we present per-scene breakdowns of relighting
results corresponding to Table 2 in the main paper. An addi-
tional visual relighting example is shown in Figure 4, where
we relight the Ficus scene with four different light probes,
comparing to the results of NeRFactor [23]. Figure 5 shows
a visual example of material separation with albedo, kd, and
normals, n. In Figure 19 we show our lighting, material
and shape separation for all scenes in the NeRF synthetic
dataset. We note that we achieve significantly more detailed
normals (thanks to the tangent space normal map included
in our shading model) and albedo mostly decorrelated from
lighting. Our remaining challenges are areas with strong
shadows or global illumination effects, which are currently
not rendered in our simplified shading model used during
optimization.
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Figure 4. Relighting quality for a scene from the NeRFactor
dataset, with our examples relit using Blender, and NeRFactor re-
sults generated using the public code.
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Figure 5. Extracted materials for a scene from the NeRFactor
dataset. We directly compare albedo kd and normals n to the re-
sults of NeRFactor. Specular parameters are omitted as we use
different BSDF models. All kd images have been renormalized
using the reference albedo, as suggested in NeRFactor.

3.2. View interpolation

This section supplements Section 4.2 in the main pa-
per. In Table 2 we show per-scene breakdowns of the view-

PSNR↑
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 21.87 16.45 17.40 21.57 18.81 18.02 19.16 18.06 18.91
NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
MipNeRF 35.08 25.56 33.44 37.38 35.46 30.63 36.38 30.46 33.05
Our 31.60 24.10 30.88 33.04 29.14 26.74 30.78 26.12 29.05

SSIM↑
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.890 0.823 0.861 0.894 0.812 0.837 0.904 0.756 0.847
NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
MipNeRF 0.980 0.934 0.981 0.982 0.978 0.959 0.991 0.885 0.961
Our 0.969 0.916 0.970 0.973 0.949 0.923 0.977 0.833 0.939

LPIPS↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.122 0.188 0.144 0.163 0.208 0.182 0.108 0.343 0.182
NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
MipNeRF 0.041 0.104 0.045 0.038 0.053 0.054 0.024 0.177 0.067
Our 0.045 0.101 0.048 0.060 0.061 0.100 0.040 0.191 0.081

FLIP↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.088 0.140 0.115 0.109 0.139 0.139 0.069 0.159 0.119
MipNeRF 0.028 0.073 0.035 0.026 0.036 0.043 0.016 0.061 0.040
Our 0.034 0.065 0.041 0.033 0.042 0.060 0.024 0.080 0.047

Table 2. Image quality metrics for the NeRF realistic synthetic
dataset. Each training set consists of 100 images with masks and
known camera poses, and the reported image metrics are the arith-
metic mean over the 200 images in the test set. Results for NeRF
are based on Table 4 of the original paper [12], with new mea-
surements for PhySG and MipNeRF using their respective pub-
licly available source code. We additionally report FLIP mean
scores [2]. Note that the Hotdog outlier LPIPS score for NeRF
is consistent with the original paper, but probably a bug.
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Figure 6. Visual quality examples from the NeRF realistic syn-
thetic dataset comparing our method to PhySG and MipNeRF.
PhySG struggles to accurately capture the complex geometry and
spatially varying materials of the dataset.

interpolation results corresponding to Table 3 in the main
paper, evaluated on the NeRF Synthetic Dataset. Figure 6
shows a visual comparison to PhySG and MipNeRF for



PSNR↑
Scene Drums Ficus Hotdog Lego Avg
PhySG 14.35 15.25 24.49 17.10 17.80
NeRF 27.67 28.05 36.71 31.89 31.08
NeRFactor 24.63 23.14 31.60 28.12 26.87
Our 28.45 31.20 36.26 30.70 31.65

SSIM↑
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.807 0.838 0.909 0.771 0.831
NeRF 0.951 0.957 0.971 0.944 0.956
NeRFactor 0.933 0.937 0.948 0.900 0.930
Our 0.959 0.978 0.981 0.951 0.967

LPIPS↓
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.215 0.176 0.153 0.278 0.206
NeRF 0.069 0.055 0.058 0.075 0.064
NeRFactor 0.082 0.087 0.101 0.124 0.099
Our 0.063 0.047 0.048 0.057 0.054

FLIP↓
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.163 0.133 0.076 0.168 0.135
NeRF 0.045 0.045 0.030 0.037 0.039
NeRFactor 0.058 0.071 0.050 0.058 0.059
Our 0.037 0.037 0.023 0.030 0.032

Table 3. View interpolation results for the four scenes of NeR-
Factor’s synthetic dataset. The NeRF column shows the baseline
NeRF trained as part of NeRFactor’s setup, and is different from
the NeRF in our other view interpolation results. Each training set
consists of 100 images with masks and known camera poses, and
the reported image metrics are the arithmetic mean over the eight
images in the test set.

the CHAIR, MICROPHONE and SHIP scenes. We note that
PhySG struggles to capture the complex geometry of the
NeRF dataset.

To study view interpolation quality for techniques which
support material decomposition, we report per-scene break-
downs of view-interpolation result in Table 3. This corre-
sponds to Table 4 in the main paper. We use the NeRFactor
dataset (which is a subset of the NeRF dataset with simpli-
fied lighting conditions) and compare with NeRFactor and
PhySG.

In Figure 7 we additionally compare view interpolation
quality on a small synthetic dataset containing three scenes
with increasing geometric complexity: KNOB, DAMICOR-
NIS and CERBERUS, each dataset consists of 256 views with
masks and known camera poses, and is validated on 200
novel views. We compare against NeRF (neural volumetric
representation) and NeuS [19] (neural implicit representa-
tion). We provided masks at training for both approaches.
We note that on this dataset, our method performs on par
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C
E

R
B

E
R

U
S

PSNR | SSIM 26.68 | 0.927 34.25 | 0.982 30.49 | 0.968
Reference NeuS NeRF Our

Figure 7. Visual quality examples on the synthetic KNOB and
CERBERUS datasets. We observe slightly blurry results from
NeuS.

Chamfer Loss↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship
PhySG 0.1341 0.4236 0.0937 0.2420 0.2592 - 0.2712 0.7118
NeRF (w/o mask) 0.0185 0.0536 0.0115 4.6010 0.0184 0.0057 0.0124 2.0111
NeRF (w/ mask) 0.0435 0.0326 0.0145 0.0436 0.0201 0.0082 0.0122 0.2931
Our 0.0574 0.0325 0.0154 0.0272 0.0267 0.0180 0.0098 0.3930

Triangles↓ (Thousands)
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship
PhySG 353 439 489 725 498 - 386 557
NeRF (w/o mask) 192 261 585 869 2259 2411 261 1087
NeRF (w/ mask) 494 548 440 694 1106 594 307 3500
Our 102 65 39 57 111 58 22 190

Table 4. Chamfer loss and triangle counts for reconstructed
meshes for the NeRF realistic synthetic dataset. We compare to
the meshes produced by PhySG, and also generate meshes from
the NeRF volume using density thresholding and marching cubes.
Note that we primarily focus on opaque geometry, so the DRUMS,
SHIP, and FICUS scenes with transparency are challenging cases.

with NeRF, and consistently produces results with greater
detail and sharpness than NeuS.

3.3. Geometry

Our primary targets are appearance-aware 3D recon-
structions which render efficiently in real-time (e.g. for a
game or interactive path tracer). As part of that goal, our
shading model includes tangent space normal maps, which



KNOB CERBERUS DAMICORNIS

NeRF [12] 2.77e-01 9.08e-03 3.34e-03
NeuS [19] 2.04e-01 2.84e-02 5.84e-04
Our 1.87e-01 1.03e-02 4.66e-04

Figure 8. Synthetic examples with increasing complexity. Each
dataset consists of 256 rendered images at a resolution of
1024×1024 pixels. We report Chamfer L1 scores on the extracted
meshes for NeRF (neural volume), NeuS (neural implicit), and our
explicit approach. Lower score is better.

82k tris 2.5M tris 766k tris 119k tris

192k tris 323k tris 314k tris 311k tris
Reference NeuS NeRF Our

Figure 9. Extracted mesh quality visualization examples on the
synthetic KNOB and CERBERUS datasets.

is a commonly used technique to capture the appearance of
high frequency detail at modest triangle counts. For these
reasons, we consider image quality our main evaluation
metric, but additionally report Chamfer scores in Table 4 for
completeness. When comparing with NeRF [12], we use
pretrained checkpoints provided by JaxNeRF1 [4], which
we denote NeRF w/o mask. We note that the pretrained
models suffer greatly from floater geometry in some scenes.
To that end, we additionally show results for NeRF (w/
mask) which further utilizes coverage masks and regular-
izes density, trading some image quality for better geomet-
ric accuracy. We use the NGP-NeRF [13] code base to gen-
erate the NeRF (w/ mask) results. To calculate the Chamfer
scores, we sample 2.5M points on both predicted mesh and
ground mesh respectively, and calculate the Chamfer dis-

1https://github.com/google-research/google-
research/tree/master/jaxnerf

Reference Our

NeRD (neural) NeRD (mesh)

Figure 10. Example of the quality of the neural NeRD representa-
tion and their final generated mesh. Note the quality loss in both
geometry and appearance (textures).

tance between the two point clouds.
While our meshes have considerably lower triangle

count that the MC extractions, we are still competitive in
terms of Chamfer loss. Note that we primarily focus on
opaque geometry, hence, the DRUMS, SHIP, and FICUS
scenes with transparency are challenging cases.

In Figure 8, we report Chamfer loss on three synthetic
datasets of increasing geometric complexity. Interestingly,
the neural implicit version performs very well on the or-
ganic shapes, but struggles on the CERBERUS robot model,
where NeRF provide the lowest Chamfer loss. Visual com-
parisons of rendered reconstruction quality are included in
Figure 7 and a visualization of the Lambertian shaded mesh
is included in Figure 9.

We additionally present an example of an output mesh
generated by NeRD [3] in Figure 10. The impact of the
mesh extraction step is notable, both to geometry and ma-
terial quality. As we only have this single data point, with
no means of accurately aligning the meshes for measuring
geometric loss (NeRD does not provide source code), we
will not provide metrics.

3.4. Quality of Segmentation Masks

Like many related works (e.g. NeRD [3], DVR [14], and
IDR [21]) our method relies on foreground segmentation
masks. While this is a limitation we hope to see lifted in
future work, we note that our method is robust to moderate
levels of mask corruption, as can be expected from auto-
mated methods or crowdsourced annotation.

Both the DTU MVS dataset (Figure 14) and the NeRD



Figure 11. Examples of masking errors for the Mold Gold Cape
dataset. Note the inconsistencies in classifying the plastic mount
as both part of the object and background.

Manual Photoshop D2: PointRend D2: M-RCNN
26.55 dB 25.94 dB 25.31 dB 22.83 dB

Figure 12. We compare four segmentation techniques for the
Ethiopian Head dataset: The original (crowdsourced) masks, auto-
matic segmentation in Photoshop (using the object selection tool),
and two versions of Detectron2. For Detectron2, we run two pre-
trained instance segmentation models which predict accurate and
coarse segmentations respectively. PSNR↑ scores are the arith-
metic mean of all reconstructed frames.

dataset (Figure 10) rely on manually annotated masks, with
some frames containing large errors and inconsistencies, as
shown in Figure 11. In Figure 12 we automatically gener-
ate segmentation masks of varying quality for a real-world
dataset. We generate masks using two versions of Detec-
tron2 [20], namely PointRend [9] and Mask R-CNN [1].
Additionally, we generated another version of masks us-
ing the “object finder” tool in Adobe Photoshop 2022. As
expected, reconstruction quality decreases gracefully with
lower mask quality. Subjectively, the silhouette looks best
using the automatic mask generated in Photoshop.

In Figure 13, we show a synthetic experiment where we
corrupt perfect masks with increasing levels of noise. Re-
construction quality decreases gracefully as a function of
corruption level, and while the quality reduction is signifi-
cant, our system is stable even for large corruptions. Here,
all masks in the dataset are corrupted, while segmentation
algorithms typically produce good results with a few local-
ized errors, so this experiment is a stress-test even for low
noise levels. We speculate that surface-based representa-
tions more robustly handle mask corruptions, as inaccura-
cies in silhouettes are less objectionable than the “floater”
geometry generated by density-based approaches.

σ = 0 σ = 5 px σ = 16 px σ = 51 px
U 26.94 dB 25.60 dB 22.93 dB 17.85 dB
C 26.94 dB 24.36 dB 20.09 dB 16.08 dB

Figure 13. To evaluate the impact of corrupted masks, we warp
perfect masks by texture-mapping them on a grid, displacing each
of the 25× 25 vertices by zero-mean Gaussian noise with increas-
ing standard deviation, σ. From top to bottom, we show a warped
texture (to give a sense of the magnitude of corruption), the cor-
rupted masks with the reference mask shown in red, and our re-
construction. The training set consists of 200 images, and PSNR↑
scores are computed as the arithmetic mean of 50 validation im-
ages. The ‘uncorrelated‘ series, U, are generated with unique ran-
dom numbers for each frame, while in the “correlated” scores, C,
we corrupt all masks using the same random seed, simulating a
segmentation with systematic bias.

3.5. Multi-View Stereo Datasets

Our experiments with scans from a limited view an-
gle, low number of views, and/or varying illumination, e.g.,
the DTU MVS datasets [7], shows that our approach work
less well than the recent neural implicit versions, such as
NeuS [19], Unisurf [15], and IDR [21], which we attribute
to a more regularized, smoother shape representation for the
neural implicit approaches, and our physically-bases shad-
ing model which assumes constant lighting. We provide
quantitative results for three scans from DTU in Table 5,
and visual examples of our results on three scans in Fig-
ure 14.

The sparse viewpoints and varying illumination (which
breaks our shading model assumption of constant light-
ing) in the DTU datasets lead to strong ambiguity in the
reconstructed geometry. In this case, we noticed that di-
rectly optimizing the per-vertex SDF values results in high-
frequency noise in the surface mesh. Instead, we follow
the approach of the neural implicit approaches and use an
MLP to parametrize the SDF values, which implicitly reg-
ularize the SDF, and, as a consequence, the resulting sur-
face geometry produced by DMTet. The smoothness of the
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Figure 14. Our decomposition results on scan 65, 106, and 118 of the DTU MVS dataset [7]. Our model is trained on a reduced subset
(49 of the 64 views) which has more consistent lighting across views, labelled by DVR [14]. However, we still penalize mask loss on the
excluded views.

Grid MLP f:4 MLP f:6

Figure 15. Comparing grid vs. MLP parametrizations of DMTet
on scan 65 from the DTU MVS dataset [7]. Directly optimizing
SDF values at grid vertices leads to a surface with high-frequency
noise (left). In contrast, if we use an MLP to parametrize the
SDF values, we can regularize the geometry, with smoothness con-
trolled by the frequency of positional encoding. We use the posi-
tional encoding in NeRF [12] with frequency set to 4 (middle) and
6 (right) respectively.

reconstructed shape can be controlled by the frequency of
the positional encoding applied to the inputs of the MLP,
as shown in Figure 15. On the contrary, in case of densely
sampled viewpoints and constant illumination, we observed
that directly optimizing per-vertex attributes better captures
high-frequency details, as shown in Figure 16, and is faster
to train. We use direct optimization of per-vertex SDF val-

Grid MLP 6

Figure 16. Comparing grid vs. MLP parametrization of DMTet
on the synthetic DAMICORNIS dataset. Directly optimizing per-
vertex SDF and offsets on a grid is faster to train, and better cap-
tures high-frequency geometric details than parametrizing DMTet
with a network.

ues in all results presented in the paper, except for the DTU
scans, and the NeRF hotdog example, where we obtained
better geometry reconstruction using the MLP parameteri-
zation.



Chamfer loss↓
Scene NeRF DVR Our IDR NeuS
scan65 1.44 1.06 1.03 0.79 0.72
scan106 1.44 0.95 1.07 0.67 0.66
scan118 1.13 0.71 0.69 0.51 0.51

Table 5. Quantitative evaluation on the DTU dataset w/ mask.
Chamfer distances are measured in the same way as NeuS [19],
IDR [21], and DVR [14]. Results for NeRF, IDR and NeuS are
taken from Table 1 in the NeuS paper [19], and the DVR results
are taken from Table 8, 9 and 10 in the DVR supplemental ma-
terial. We also reevaluated the DVR scores using the DTU MVS
dataset evaluation scripts [7] to verify the evaluation pipeline. Our
Chamfer distances are lower than NeRF, roughly on par with DVR,
but higher than the current state-of-the-art (IDR/NeuS). Still, we
find these results encouraging, considering that we provide an ex-
plicit mesh with factorized materials.

We use the same MLP as in DVR [14], which consists
of five fully connected residual layers with 256 hidden fea-
tures. In addition, we adopt the positional encoding in
NeRF [12] and progressively fit the frequencies similar to
SAPE [6]. More specifically, for an input position p and
a set of encoding functions e1, e2, . . . , en with increasing
frequencies, we multiply each encoding en(p) with a soft
mask αn(t) at training iteration t. The first nbase encodings
are always exposed to the network, and we linearly reveal
the rest during training such that:

αn(t) =

{
1 n ≤ nbase

min(1, t
tf
) n > nbase

(1)

where tf is the iteration when all encodings are fully re-
vealed. In practice, we find that progressively fitting the
frequencies produces less high-frequency artifacts on the re-
constructed surface than the non-progressive scheme.

4. Implementation
4.1. Optimization

Unless otherwise noted, we start from a tetrahedral grid
of resolution 128 (using 192k tetrahedra and 37k vertices).
As part of the Marching Tetrahedral step, each tetrahedron
can generate up to two triangles.

We initialize the per-vertex SDF values to random val-
ues in the range [−0.1, 0.9], such that a random selection of
approximately 10% of the SDF values will report “inside’
status at the beginning of optimization. The per-vertex off-
sets are initialized to zero.

Textures are initialized to random values within the valid
range. We also provide min/max values per texture chan-
nels, which are useful when optimizing from photographs,
where we follow NeRFactor [23] and us a range on the
albedo texture of kd ∈ [0.03, 0.8]. Similarly, we limit the

minimal roughness value (green channel of the korm tex-
ture) to 0.08 (linearized roughness). The tangent space nor-
mal map is initialized to (0, 0, 1), i.e., following the sur-
face normal with no normal perturbation. The environment
light texels are initialized to random values in the range
[0.25, 0.75], which we empirically found to be a reasonable
starting point in our tests.

We use the Adam [8] optimizer with default settings
combined with a learning rate scheduler with an exponen-
tial falloff from 1.0 to 0.1 over 5000 iterations. We typ-
ically train for 5000 iteration using a mini-batch of eight
images, rendered at the native resolution of the images in
the datasets (typically in the range from 512×512 pixels to
1024×1024 pixels). Next, after texture reparametrization,
we finetune geometry and 2D textures with locked topol-
ogy for another 5000 iterations. The entire process takes
approximately an hour on a single NVIDIA V100 GPU,
with indicative results after a few minutes. We include a
training visualization in the supplemental video.

In DTU experiments, we set n = 6, nbase = 4 and
tf = 2500 for the progressive positional encoding. We dis-
able the normal perturbation and second-stage optimization
to get the best geometric quality, and train DMTet for 10k
iterations.

4.2. Losses and Regularizers

Image Loss Our renderer uses physically based shading
and produces images with high dynamic range. Therefore,
the objective function must be robust to the full range of
floating-point values. Following recent work in differen-
tiable rendering [5], our image space loss, Limage, com-
putes the L1 norm on tone mapped colors. As tone map
operator, we transform linear radiance values, x, according
to x′ = Γ(log(x + 1)), where Γ(x) is the sRGB transfer
function [18]:

Γ(x) =

{
12.92x x ≤ 0.0031308

(1 + a)x1/2.4 − a x > 0.0031308
(2)

a = 0.055.

Light Regularizer Real world datasets contain primarily
neutral, white lighting. To that end, we use a regularizer for
the environment light that penalizes color shifts. Given the
per-channel average intensities ci, we define the regularizer
as:

Llight =
1

3

3∑
i=0

∣∣∣∣∣ci − 1

3

3∑
i=0

ci

∣∣∣∣∣ . (3)

Material Regularizer As mentioned in the paper, we reg-
ularize material parameters using a smoothness loss similar
to NeRFactor [23]. Assuming that kd (x) denotes the kd



Figure 17. Cross sections of shapes optimized without regular-
ization loss on SDF (left), with smoothness loss used by Liao
et al. [11] (middle) and with our regularization loss (right). The
random faces inside the object are removed by the regularization
loss on SDF.

parameter at world space position x and ϵ is a random dis-
placement vector, we define the regularizer as:

Lmat =
∑
xsurf

|kd (xsurf)− kd (xsurf + ϵ)| . (4)

To account for the lack of global illumination and shad-
owing in our differentiable renderer, we use an additional,
trainable visibility term which can be considered a regular-
izer. We store this term in the otherwise unused o-channel
of the korm specular lobe parameter texture and use it to
directly modulate the radiance estimated by our split sum
shading model. Thus, it is similar to a simple ambient oc-
clusion term and does not account for directional visibility.

Laplacian Regularizer In the second pass, when topol-
ogy is locked, we use a Laplacian regularizer [17] on the
triangle mesh to regularize the vertex movements. The
uniformly-weighted differential δi of vertex vi is given by
δi = vi − 1

|Ni|
∑

j∈Ni
vj , where Ni is the one-ring neigh-

borhood of vertex vi. We follow Laine et al. [10] and use a
Laplacian regularizer term given by

Lδ =
1

n

n∑
i=1

∥δi − δi
′∥2 , (5)

where δi
′ is the uniformly-weighted differential of the input

mesh (i.e., the output mesh from the first pass).

SDF Regularizer If we only optimize for image loss, in-
ternal faces which are not visible from any viewpoint do not
receive any gradient signal. This leads to random geometry
inside the object, as shown in Fig. 17, which is undesirable
for extracting compact 2D textures. To remove the internal
faces, we regularize the SDF values of DMTet similar to
Liao et al. [11] as described in the main paper (Eqn. 2). The
L1 smoothness loss proposed by Liao et al., adapted from
occupancy to SDF values, can be written as:

Lsmooth =
∑

i,j∈Se

|si − sj |, (6)

Figure 18. Reconstruction of scan 65 from the DTU MVS
dataset [7] without (left) and with (right) the regularization loss
based on visibility of faces. The regularization loss removes
floaters behind the object that are not visible from the training
views.

ALGORITHM 1: Computation of the loss gradient w.r.t,
inputs, ∂L

∂X
, for a 2D convolution, expressed as a gather

or scatter operation. We use the notation xi,j to denote
element (i, j) of the tensor X .

Input: output gradient: ∂L
∂Y

, weight tensor: W
∂L
∂X

= 0 ;
for i, j ∈ pixels do

for k, l ∈ footprint do
∂L

∂xi,j
+= WT

k,l · ∂L
∂yi+k,j+l

; // gather
∂L

∂xi+k,j+l
+= Wk,l · ∂L

∂yi,j
; // scatter

where Se is the set of unique edges, and si represents the
per-vertex SDF values. In contrast, our regularization loss
explicitly penalizes the sign change of SDF values over
edges in the tetrahedral grid. Empirically, our loss more
efficiently removes internal structures, as shown in Fig. 17.

In our DTU experiments, we use an additional regular-
ization loss to removes the floaters behind the visible sur-
face, as illustrated in Fig 18. Specifically, for a triangular
face f extracted from tetrahedron T , if f is not visible in
current training views, we encourage the SDFs at vertices
of T to be positive with BCE loss.

4.3. Split Sum Implementation Details

We represent the trainable parameters for incoming
lighting as texels of a cube map (typical resolution 6×512×
512). The base level represents the pre-integrated light-
ing for the lowest supported roughness value, which then
linearly increases per mip-level. Each filtered mip-map is
computed by average-pooling the base level texels to the
current resolution (for performance reasons, the quantiza-
tion this process introduces is an acceptable approximation
for our use case). Then, each level is convolved with the
GGX normal distribution function. We pre-compute accu-
rate filter bounds per mip-level (the filter bound is a function
of the roughness, which is constant per mip level).

The loss gradients w.r.t. the inputs, ∂L
∂X , for a convolu-

tion operation can be computed as a gather operation using



products of the transposed weight tensor, WT , and the out-
put gradient, ∂L

∂Y , within the filter footprint. However, in
cube maps, the filter footprint may extend across cube edges
or corners, which makes a gather operation non-trivial. We
therefore express the gradient computation as a scatter op-
eration, which can be efficiently implemented on the GPU
using non-blocking atomicadd instructions. We illustrate
the two approaches in Algorithm 1.

5. Scene Credits

Mori Knob from Yasotoshi Mori (CC BY 3.0). Cer-
berus model used with permission from NVIDIA. Dam-
icornis, Saxophone, and Jackson models courtesy of the
Smithsonian 3D repository [16], (CC0). Spot model (pub-
lic domain) by Keegan Crane. NeRD datasets (moldGold-
Cape, ethiopianHead) (Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International). The NeRF
and NeRFactor datasets contain renders from modified
blender models located on blendswap.com: chair by 1DInc
(CC-0), drums by bryanajones (CC-BY), ficus by Herber-
hold (CC-0), hotdog by erickfree (CC-0), lego by Heinzel-
nisse (CC-BY-NC), materials by elbrujodelatribu (CC-0),
mic by up3d.de (CC-0), ship by gregzaal (CC-BY-SA).
Probes from Poly Haven [22] (CC0) and the probes pro-
vided in the NeRFactor dataset which are modified from
the probes (CC0) shipped with Blender. DTU scans from
the DTU MVS dataset [7].
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Figure 19. Our decomposition results on the NeRF Synthetic dataset. We show our rendered models alongside the material textures: diffuse
(kd), roughness/metalness (korm), the normals, and the extracted lighting.
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