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Note: We use blue color to refer to figures, tables, section

numbers and citations in the main paper (e.g., [17]). All

red or green characters refer to figures, tables, section num-

bers and citations in this supplementary material.

1. Detail about Event Cameras (Section 2)
While conventional cameras present the scenes as

frames, an event camera reports the scene as a stream of

sparse and disconnected events in time, i.e., per-pixel in-

tensity changes larger than a predefined threshold. If a

pixel value changes larger than a threshold, the event cam-

era records a positive or negative sign value with the pixel

location and the timestamp, asynchronously. The sign indi-

cates if that pixel has received larger intensity changes than

the threshold, i.e., positive event, or its intensity for that

pixel has dropped lower than another threshold, i.e., minus

event. Each event point in the stream is a quadruple; two for

the pixel location, one for timestamp, and one for the sign.

Each event is fired when it happens with very low latency,

in the order of microseconds.

The asynchronous nature of events brings the unique ca-

pability of being immune to motion blur even under rapid

scene changes and camera movements. The event camera

also has a higher dynamic range that reveals scene details

that ordinary cameras cannot sense and may miss. It also

has additional benefits of low power consumption and low

bandwidth requirements.

2. In-depth Comparison to [27] (Section 5)
Event and Intensity Fusion. In the state-of-the-art event

intensity depth estimation method [27], their ‘Recycling

Network’ is used for fusing events and intensity images. It

is a light-weighted version of E2SRI [28,29] which is origi-

nally aimed for super-resolution. As their recycling network

is based on a recurring neural network (RNN) structure [3],

the data processing is not performed in parallel and is not
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time efficient to fuse the two modalities. Different to their

method, the proposed concentration networks does not have

any RNN structure, thus data is processed in parallel and is

much faster. We reach almost 2× inference speed in event-

intensity design, i.e. 18.2 FPS in our design in comparison

to 10 FPS in [27]. This is also presented in Table 1 of the

main paper.

Intermediate Output of the Network. Our concentra-

tion network does not require any additional loss term as

it only creates the appropriate event stack needed to solve

the stereo matching problem. In contrast, the recycling net-

work of the state-of-the-art model requires additional loss

term such as LPIPS and L1 to produce image-like outputs

by combining event stacks and intensity images to recon-

struct a high dynamic range, blur-free image-like output.

Location to Fuse Events and Intensity Image. The re-

cycling network combines event stacks and intensity images

at the near-input level after a few convolution layers. As

there is a domain gap between the event stack and the in-

tensity image, combining two different visual signature at

the input level may be problematic, especially if the stacked

event information and its corresponding intensity image are

not perfectly aligned due to warping errors. Instead of fus-

ing the events and intensity image at the input level, we

use a 1×1 convolution to perform feature-level fusion in the

near-end features. As we combine the feature vectors, we

relatively less suffer from the problems of combining input

levels as our qualitative results suggest in Fig. 5 of the main

paper and the supplemented Fig. 1 and Fig. 2.

3. Number of Events per Stack.
We investigate the effect of the number of events per

event stack to the performance, and summarize results in

Table. 1. While a large number of events in a stack would

contain textural details, it also occurs overriding the previ-

ous events and even harms the visual details. If the number

of events exceeds 1 million, the result is also bad as many
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Table 1. Effect of the number of events on depth estimation.

Starting from 250K events, the error metrics become lower when

we stack more events, i.e., 500K. But further adding events in-

creases the error as the events start overriding previous events. The

concentration network learns to find the best balance and creates

an event stack with the most details that in return creates depth es-

timates with the least error values with a large gap to the manually

set number of events.

Number of Events MAE(↓) 1PE(↓) 2PE(↓) RMSE(↓)
250,000 0.906 21.875 6.987 1.979

500,000 0.864 20.175 6.330 1.939

1,000,000 0.888 20.879 6.607 1.980

2,000,000 0.889 20.475 6.491 2.013

Concentrated Events 0.831 18.875 5.757 1.880

incoming new events overwrite previous events. But using a

small number of events in a stack (e.g., 250K) result in poor

depth estimation, as few events would miss many details.

Empirically, using 500K events the performance shows rea-

sonable performance. In contrast, our concentrated stack

outperforms them.

4. RGB and event fusion method ablation.
We concatenate RGB and event for the input to our

model following our ablation settings as mentioned in the

supplement.Our fusion significantly outperforms it (com-

pare row 2 and 3) in all measures. Furthermore when com-

paring to the intensity only settings (row 4), our method

(row 3) outperforms it in all metrics by noticeable margins.

Table 2. RGB and event fusion ablation study
Method Modality MAE(↓) 1PE(↓) 2PE(↓) RMSE(↓)

Ours E 0.797 18.053 5.369 1.799

Concatenate E+I 0.505 8.345 1.800 1.279

Ours E+I 0.485 7.929 1.668 1.238
EI-Stereo [2] I 0.511 8.524 1.832 1.288

5. Additional Qualitative Results (Section 6.2)
We present additional qualitative results from the DSEC

dataset. We compare our method to the baseline method

[43] as the DSEC website challenge [1] kindly provided.

By the courtesy of the authors of [27] to send their results

submitted in the DSEC challenge to us, we compare qual-

itatively to their results for better understanding the differ-

ences. In the yellow highlighted boxes in the second row of

Fig. 1, [43] does not recover the car. This is because the car

is moving at a constant speed and few events occur. On the

other hand, our method recovers the car relatively clearly.

In addition, our results by the ‘event-only’ method (column-

(d)) exhibit sharp and detailed edges when compared to the

[43]; Bus stop in first, fourth row of Fig. 1, guard rails in

second row of Fig. 2. Compared with [27] (column-(e)),

our event-intensity method has fewer artifacts. These ar-

tifacts can generate quite large errors, such as highlighted

boxes in fifth row of Fig. 1 and third row of Fig. 2. Fur-

thermore, our event-intensity method (column-(f)) recovers

further details such as the empty spaces of the guard rails in

third row of Fig. 1.
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(a) intensity image (b) concentrated stack (c) event-only [43] (d) Ours event-only (e) event-intensity [27] (f) Ours event-intensity

Figure 1. Qualitative comparison on dense depth estimation. We present our dense depth estimations using event-only (d) and events

fused with intensity images (f) together with the (a) intensity image and (b) concentrated event stack for reference. We compare them to

the (c) event-only [43] and (e) event-intensity [27] methods respectively.



(a) intensity image (b) concentrated stack (c) event-only [43] (d) Ours event-only (e) event-intensity [27] (f) Ours event-intensity

Figure 2. More qualitative comparison on dense depth estimation. We present our dense depth estimations using event-only (d) and

events fused with intensity images (f) together with the (a) intensity image and (b) concentrated event stack for reference. We compare

them to the (c) event-only [43] and (e) event-intensity [27] methods respectively.


