
TableFormer: Table Structure Understanding with Transformers
Supplementary Material

Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak, Peter Staar
IBM Research

{ahn,nli,mly,taa}@zurich.ibm.com

1. Details on the datasets

1.1. Data preparation

As a first step of our data preparation process, we have
calculated statistics over the datasets across the following
dimensions: (1) table size measured in the number of rows
and columns, (2) complexity of the table, (3) strictness of
the provided HTML structure and (4) completeness (i.e. no
omitted bounding boxes). A table is considered to be simple
if it does not contain row spans or column spans. Addition-
ally, a table has a strict HTML structure if every row has the
same number of columns after taking into account any row
or column spans. Therefore a strict HTML structure looks
always rectangular. However, HTML is a lenient encoding
format, i.e. tables with rows of different sizes might still
be regarded as correct due to implicit display rules. These
implicit rules leave room for ambiguity, which we want to
avoid. As such, we prefer to have ”strict” tables, i.e. tables
where every row has exactly the same length.

We have developed a technique that tries to derive a
missing bounding box out of its neighbors. As a first step,
we use the annotation data to generate the most fine-grained
grid that covers the table structure. In case of strict HTML
tables, all grid squares are associated with some table cell
and in the presence of table spans a cell extends across mul-
tiple grid squares. When enough bounding boxes are known
for a rectangular table, it is possible to compute the geo-
metrical border lines between the grid rows and columns.
Eventually this information is used to generate the missing
bounding boxes. Additionally, the existence of unused grid
squares indicates that the table rows have unequal number
of columns and the overall structure is non-strict. The gen-
eration of missing bounding boxes for non-strict HTML ta-
bles is ambiguous and therefore quite challenging. Thus,
we have decided to simply discard those tables. In case of
PubTabNet we have computed missing bounding boxes for
48% of the simple and 69% of the complex tables. Regard-
ing FinTabNet, 68% of the simple and 98% of the complex
tables require the generation of bounding boxes.

Figure 1 illustrates the distribution of the tables across

different dimensions per dataset.

1.2. Synthetic datasets

Aiming to train and evaluate our models in a broader
spectrum of table data we have synthesized four types of
datasets. Each one contains tables with different appear-
ances in regard to their size, structure, style and content.
Every synthetic dataset contains 150k examples, summing
up to 600k synthetic examples. All datasets are divided into
Train, Test and Val splits (80%, 10%, 10%).

The process of generating a synthetic dataset can be de-
composed into the following steps:

1. Prepare styling and content templates: The styling
templates have been manually designed and organized into
groups of scope specific appearances (e.g. financial data,
marketing data, etc.) Additionally, we have prepared cu-
rated collections of content templates by extracting the most
frequently used terms out of non-synthetic datasets (e.g.
PubTabNet, FinTabNet, etc.).

2. Generate table structures: The structure of each syn-
thetic dataset assumes a horizontal table header which po-
tentially spans over multiple rows and a table body that
may contain a combination of row spans and column spans.
However, spans are not allowed to cross the header - body
boundary. The table structure is described by the parame-
ters: Total number of table rows and columns, number of
header rows, type of spans (header only spans, row only
spans, column only spans, both row and column spans),
maximum span size and the ratio of the table area covered
by spans.

3. Generate content: Based on the dataset theme, a set of
suitable content templates is chosen first. Then, this content
can be combined with purely random text to produce the
synthetic content.

4. Apply styling templates: Depending on the domain
of the synthetic dataset, a set of styling templates is first
manually selected. Then, a style is randomly selected to
format the appearance of the synthesized table.

5. Render the complete tables: The synthetic table is
finally rendered by a web browser engine to generate the



����������	 
�������� ���
� ����

�����

����
��

����
�

����
��

����
�

����
�

��


���� ���� ���

����� ���� ��


���� ��� ������

����� ���� ��


���� ���� �� ���

����
��

���
���� �
!�"#

���� �
!�"#

����
�

$��� $%�� &��

����
��

���
���� �
!�"#

���� �
!�"#

����
�

'(�

����
�

���
���� �
!�"#

�'��

����
��

�������
"�����)
������ �������

"�����)
������

*������
+����,�
���-�+�
������

����
�

$��� $%�� &��

����
�� ����
�

'(�

����
�

�'��

Figure 1: Distribution of the tables across different dimensions per dataset. Simple vs complex tables per dataset and split,
strict vs non strict html structures per dataset and table complexity, missing bboxes per dataset and table complexity.

bounding boxes for each table cell. A batching technique is
utilized to optimize the runtime overhead of the rendering
process.

2. Prediction post-processing for PDF docu-
ments

Although TableFormer can predict the table structure and
the bounding boxes for tables recognized inside PDF docu-
ments, this is not enough when a full reconstruction of the
original table is required. This happens mainly due the fol-
lowing reasons:

• TableFormer output does not include the table cell con-
tent.

• There are occasional inaccuracies in the predictions of
the bounding boxes.

However, it is possible to mitigate those limitations by
combining the TableFormer predictions with the informa-
tion already present inside a programmatic PDF document.
More specifically, PDF documents can be seen as a se-
quence of PDF cells where each cell is described by its con-
tent and bounding box. If we are able to associate the PDF
cells with the predicted table cells, we can directly link the
PDF cell content to the table cell structure and use the PDF
bounding boxes to correct misalignments in the predicted
table cell bounding boxes.

Here is a step-by-step description of the prediction post-
processing:

1. Get the minimal grid dimensions - number of rows and
columns for the predicted table structure. This represents
the most granular grid for the underlying table structure.

2. Generate pair-wise matches between the bounding
boxes of the PDF cells and the predicted cells. The Intersec-
tion Over Union (IOU) metric is used to evaluate the quality
of the matches.

3. Use a carefully selected IOU threshold to designate
the matches as “good” ones and “bad” ones.

3.a. If all IOU scores in a column are below the thresh-
old, discard all predictions (structure and bounding boxes)
for that column.

4. Find the best-fitting content alignment for the pre-
dicted cells with good IOU per each column. The alignment
of the column can be identified by the following formula:

alignment = argmin
c

{Dc}

Dc = max{xc}−min{xc}
(1)

where c is one of {left, centroid, right} and xc is the x-
coordinate for the corresponding point.

5. Use the alignment computed in step 4, to compute
the median x-coordinate for all table columns and the me-
dian cell size for all table cells. The usage of median dur-
ing the computations, helps to eliminate outliers caused by
occasional column spans which are usually wider than the
normal.

6. Snap all cells with bad IOU to their corresponding
median x-coordinates and cell sizes.

7. Generate a new set of pair-wise matches between the
corrected bounding boxes and PDF cells. This time use a
modified version of the IOU metric, where the area of the
intersection between the predicted and PDF cells is divided
by the PDF cell area. In case there are multiple matches
for the same PDF cell, the prediction with the higher score
is preferred. This covers the cases where the PDF cells are
smaller than the area of predicted or corrected prediction
cells.

8. In some rare occasions, we have noticed that Table-
Former can confuse a single column as two. When the post-
processing steps are applied, this results with two predicted
columns pointing to the same PDF column. In such case
we must de-duplicate the columns according to highest to-
tal column intersection score.

9. Pick up the remaining orphan cells. There could be
cases, when after applying all the previous post-processing
steps, some PDF cells could still remain without any match
to predicted cells. However, it is still possible to deduce
the correct matching for an orphan PDF cell by mapping its
bounding box on the geometry of the grid. This mapping
decides if the content of the orphan cell will be appended to
an already matched table cell, or a new table cell should be
created to match with the orphan.



9a. Compute the top and bottom boundary of the hori-
zontal band for each grid row (min/max y coordinates per
row).

9b. Intersect the orphan’s bounding box with the row
bands, and map the cell to the closest grid row.

9c. Compute the left and right boundary of the vertical
band for each grid column (min/max x coordinates per col-
umn).

9d. Intersect the orphan’s bounding box with the column
bands, and map the cell to the closest grid column.

9e. If the table cell under the identified row and column
is not empty, extend its content with the content of the or-
phan cell.

9f. Otherwise create a new structural cell and match it
wit the orphan cell.

Aditional images with examples of TableFormer predic-
tions and post-processing can be found below.

Figure 2: Example of a table with multi-line header.

Figure 3: Example of a table with big empty distance be-
tween cells.

Figure 4: Example of a complex table with empty cells.



Figure 5: Simple table with different style and empty cells.

Figure 6: Simple table predictions and post processing.

Figure 7: Table predictions example on colorful table.

Figure 8: Example with multi-line text.



Figure 9: Example with triangular table.
Figure 10: Example of how post-processing helps to restore
mis-aligned bounding boxes prediction artifact.



Figure 11: Example of long table. End-to-end example from initial PDF cells to prediction of bounding boxes, post process-
ing and prediction of structure.


