
Understanding Uncertainty Maps in Vision with Statistical Testing
(Supplement)

1. Theoretical justifications
Lemma 1. Let Z(s) be a UGRF, and Λ(s) = V ar(Ż(s)).
The following properties are satisfied, [3]:

1. If Γ is spatially constant non-singular matrix, then
Ld(S,Γ

′ΛΓ) = Ld(Γ
−1S).

2. If Γ = γID×D, then Ld(Γ
−1S,Λ) = 1

γdLd(S,Λ).

3. If S′ = ΓS, then Λ(S′) = Γ′Var(Ż(S))Γ.

Theorem 3.2. (In the main paper). The domain S of
the GRRF F can be warped via a one-to-one smooth
transformation Γ to a domain S′ without fundamentally
changing the problem, namely: P (maxs′∈S′ F (s′) ≥ t) =
P (maxs∈S F (s) ≥ t).

Proof. Since Γ is a one-to-one mapping, let S′ = Γ−1S and
S = ΓS′. Since F is a Gaussian Related RF, we consider Z
as an underlying UGRF, and denote Λ′ and Λ as variance of
spatial derivatives of Z on S′ and S, respectively. We notate
Euler density of F as ρ. To show that with warping we do
not change the problem, we need to show the following:

P
(
max
s′∈S′

F (s′) ≥ u

)
= P

(
max
s∈S

F (s) ≥ u

)
.

We start with Application of GKF Theorem (from the main
paper):
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Ż(S′)

)′
Γ

)
ρd(u)

=
∑
d

Ld

(
S,Var

(
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Remark 1. For uZ , s.t. P (Zmax ≥ uZ |H0) = 0.05,
ρZd (uZ) > 0 for d = 0, . . . , 3. Note, it is actually true
for u << uZ , but we only need uZ case. We focus on
d = 0, . . . , 3, because it is the most common case in prac-
tical application, and corresponds to the dimension of the
Search region/Domain S. Usually in computer vision we
only focus on 2d and 3d images and do not consider do-
mains with dimension > 3.

Proof. It is easy to see that from the form of ρZd (u).
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The EC densities ρZd (u) depend on a single parameter λ,

the roughness of the random field. We can see that for u > 1
and d = 0, . . . , 3, ρZd (u) > 0. And in a case of 2d GRF,
common in vision, u > 0 is enough to get ρZd (u) > 0.

Theorem 3.3. (In the main paper). Consider Gaus-
sian Related RF F (S) on domain S with Euler densi-
ties {ρFd (u)} , and underlying UGRF Z(SZ) on domain
SZ with Euler densities {ρZd (u)}. Assume, that both Eu-
ler densities {ρFd (u)} and {ρZd (u)} are defined on the
same domain u ∈ U and max{ρFd (u)/ρZd (u)} ≤ 1.
Then, by finding a one-to-one transformation Γ, such that
S = ΓSZ and SZ = Γ−1S, and selecting threshold u∗,
such that P (maxs∈SZ Z(s) ≥ u∗) = 0.05, guarantees that
P (maxs∈S F (s) ≥ u∗) ≤ 0.05.

Proof. Let ρFd (u) = cd(u)ρ
Z
d (u). Given the Remark 1,

consider two cases with respect to sign of ρFd (u):

1. If ρFd (u) < 0, then cd(u) < 0, then ρFd (u) <
max{cd(u)}ρZd (u).

2. If ρFd (u) ≥ 0, then cd(u) ≥ 0, then ρFd (u) ≤
max{cd(u)}ρZd (u).

That is, for any sign of ρFd (u), we have ∀d, ρFd (u) ≤
cρZd (u), where c = max{cd(u)}. And there ∃j, such that
ρFj (u) = cρZj (u). Assuming that max{ρFd (u)/ρZd (u)} ≤
1, we get c ≤ 1.

We start with an application of GKF Theorem (from the
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main paper):

P
(
max
s∈S

F (s) ≥ u

)
≈

∑
d

Ld(S,Λ
F )ρFd (u)

≤ c
∑
d

Ld(S,Λ
F )ρZd (u)

≤ Ld(S,Λ
F )ρZd (u)

Applying Thm. 3.2, if we find a warping Γ, s.t.
S = Γ−1SZ and SZ = ΓS, then

= Ld(S
Z ,ΛZ)ρZd (u)

= P
(
max
s∈SZ

F (s) ≥ u

)

2. Bootstrap

In the method section of the main paper (‘Uncertainty
between the models’), we briefly attributed to an applica-
tion of bootstrap technique to approximate the distribution
of test statistics {Fi}Ni=1 under the null H0 and conduct a
hypothesis test, by checking if observed statistics falls into
the rejection region, defined by corresponding uF .
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Figure 1. Illustration of application bootstrap technique to generate dis-
tribution of statistics F under H0.

The bootstrap procedure for approximation of distribu-
tion of test statistics under H0 is presented in Algorithm 1
and illustrated in Fig. 1.

Algorithm 1 Bootstrap algorithm for approximation of test
statistics distribution under H0

Input: Uncertainty masks for models A and B, Ax(s) and Bx(s) cor-
respondingly, where s represents pixel

Output: Distribution of test statistics F under H0

Require: Test statistics F (x, y) between masks x and y

1: Compute observed statistics F obs
A,B

:= F (Ax, Bx)
2: Generate 2 data sets of uncertainty masks under H0:

A∗ = A− µgroup + µoverall and
B∗ = A− µgroup + µoverall

3: for i← 1 to N do
4: Sample with replacement sets A∗

i and B∗
i from the combined

set A∗ ∪B∗

5: Compute corresponding F i
H0

:= FA∗
i ,B

∗
i

6: end for
▷ Generated {F i

H0
}Ni=1 approximates the distribution of test statistics

F (x, y) under H0

Note: Algorithm 1 requires definition of test statistics
F (x, y). For example, it can be a common student statistics
FA,B(s) = (Ax(s) − Bx(s))/σ(Ax(s) − Bx(s)), where σ is an
estimate of standard deviation and x̄ represents the sample
mean.

The approximation of the distribution of test statistics
{Fi}Ni=1 under the null hypothesis H0 allows us to find a
threshold uF , such that P (Fmax ≥ uF |H0) = α. Thus,
if observed test statistics F obs

A,B is higher than this threshold

uF (or in our case significant mask M̂F contains signifi-
cant pixels), then we reject H0 in favour of HA.

3. Description of the Warping NODE Networks

3.1. Warping NODE

Learning the warping Φ(S) defined in equation 1.

dΦt

dt
= V (Φt), (1)

As we mentioned, to model warping Φt we follow a
common in vision technique [1, 2]. The main idea is to
model warping as target coordinates, from which we sam-
ple (or move to). That is, for input image with dimension
h× w, Φt is of dimension h× w × 2, where 2 appears be-
cause the dimension of image is 2. Since we model warping
Φt as NODE, the modelled derivative V (Φt) have to be of
the same size h × w × 2. Since it is important to gener-
ate different warping according to the input x, we model
V (Φt) conditioning on image x, as V (ΦT , x). We do this
using U-Net, demonstrated in Fig. 2 (Top) with number of
layers/channels depending on a problem.

3.2. Discriminator

Discriminator is used to minimize Wasserstrein distance,
and presented in Fig. 2 (Bottom).
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Figure 2. Top: Warping Neural ODE part, which is used to generate the warping Φt+1 at time point t+ 1. Bottom: Discriminator D, main goal of which
is to differentiate between warped RF F̂ and observed GRF Z. N stands for number of convolution blocks.
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Learning GKF on scaled domain

Figure 3. Segmentation network, the main goal of which is to learn the GKF theorem on a scaled domain and derive the significance mask M̂Z and later
M̂F . The implementation is based on U-net structure. DC block corresponds to double convolution block, where first convolution changes number of
channels and second preserves it.



3.3. Notes on assumptions of the Theorem 3.3 and
GKF

One of the assumption of the Theorem 3.3 is that ρF (s)
and ρZ(s) are defined for the same domain s ∈ S. In other
words, since we are focusing on the warping, rather than
Generative models, we are not allowed to generate pixels
with completely new color values, but only warp (make
wider, change order) observed pixels. For this reason, we
scale both observed RF F and GRF Z to the same scale,
e.g. [0, 1]. Since the scale is changed, we cannot directly
use significant thresholds uZ , obtained from GKF. We have
to properly scale it, corresponding to the scaling used for
F and Z. Instead, we use a “smart” scaling. To derive the
threshold, corresponding to the scaled uZ , we train (in a su-
pervised manner) a segmentation network on (scaled GRF
Z; significant mask MZ , derived before scaling based on
uZ), represented on Fig. 3. Then resulted network is ap-
plied to the warped image F̂ to derive MF .

3.4. Notes on generating GRF

The main idea of our method is based on mapping an un-
certainty map to the isotropic GRF, for which we can derive
significant region based on GKF theorem. To generate an
isotropic GRF, it is necessary to provide 1) dimensions of a
RF, which corresponds to the dimension of the input uncer-
tainty map, 2) covariance function: C(t) = exp

(
−β||t||2

)
with the proper scale β. Note that scale β directly affects the
threshold uZ for which elements (in our case pixels) of GRF
is considered to be significant, through the computation of
LKC (or EEC). We consider scale β as a hyper parameter,
which impacts how easy it is to find a warping from uncer-
tainty map to GRF, and mainly depends on an uncertainty
map size. However, given the scale it is important to recom-
pute a threshold uZ to generate a significant mask MZ for
GRF.

4. Experiments
4.1. Synthetic

Figure 4. (Left) GRRF,
χ2 with 5 degrees of freedom
and (Right) overlapped signifi-
cance mask M̂F derived by our
model.

We show our model
learns correct significant
region, preserving power
and limiting type-1 error
rate by a significance level.
We generate 1000 samples
of Gaussian RF Z and 3
sets of the 1000 samples
of Chi-squared RF F , with
the following degrees of

freedom: 1, 3, and 5. All sets were generated to satisfy
the conditional that P (Zmax ≥ uZ |H0) = 0.05 and
P (Fmax ≥ uF |H0) = 0.05. Since there is a closed form
solution to compute E{ϕ(Au)} for F , we can obtain a

ground-truth significance mask MF . Therefore, we can
evaluate the performance of our model by comparing
generated MF with a real (ground truth) MF . Tab. 1
provides achieved power and type-1 error on the learned
test. We see that for all cases power of test is higher than
80%, while preserving type-1 error less than 0.05.

χ2
1 χ2

3 χ2
5 χ2

1 χ2
3 χ2

5

Power 0.83 0.83 0.87 Type-1 0.02 0.02 0.02

Table 1. The achieved power and type-1 error of our generalized test, per-
formed on three different GRRF, i.e. χ2 with varying degrees of freedom.

4.2. Longitudinal Brain Image data, ADNI.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu). It contains gray matter prob-
ability masks from the T-1 weighted MR images of size
105 × 127 × 105 per subject at 3 time steps. The subjects
are divided into two groups: diagnosed with Alzheimer’s
disease (AD: 377 subjects) and healthy controls (CON: 152
subjects). Results mentioned in the main paper are dis-
played in Fig. 5.
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Figure 5. Top: AD group, Bottom: Con group. Each triplet consists of (uncertainty mask, significant region based on our method, significant region based
on 5% quantile).


