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1. Details of Data Collection and Verification
The team consisted of 23 members, including biology

experts with knowledge of biodiversity.
We manually identify and provide framewise annota-

tions of both animal and action descriptions for over 50
hours of videos that were collected from YouTube videos.
We process them into a total of 30,100 video clips, each
ranging from 1 second to 117 seconds (average 6 seconds).
The title, description or captions in the videos contains the
name of the animals. We manually check and tally the an-
imals in the video clips with the animal names provided.
As for the actions, we identify them using a defined set of
ethological terms [1, 2, 4, 5]. In order to minimize discrep-
ancies in our annotations, we first identify the commonly
used terms that describe the same type of action in different
classes of animals (e.g., grooming in insects, but preening in
birds refers to the same act of self-maintenance), and rede-
fine ambiguous terms that describe vastly different move-
ments (e.g., snake gliding on land versus eagle gliding in
the sky). At the same time, we also include descriptions
of the scenes, and note their start and end times for video
grounding task. We conduct a total of three rounds of qual-
ity checks through various permutations of cross-checks by
different individuals to verify the correct start and end time
of the video clips for video grounding task, and harmonize
the nomenclature of actions for action recognition task.

As for pose estimation task, we label a total of 33K im-
ages that are extracted from the video clips, using Label
Studio [6]. Annotators are given instructions with refer-
ence images on how to label each class of animals. As
the animal footages are captured in the wild, the complex
backgrounds with various illumination and weather condi-
tions make the annotation challenging. Thus, three rounds
of quality checks are performed to ensure that the keypoints
are correctly labelled.
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2. Diverse Range of Animals
Our dataset contains over 850 species of animals. We

group them into 6 major animal classes, and further divide
them into sub-classes. The distribution of animals in our
dataset is shown in Fig. 1 and examples are shown in Fig. 2.

For action recognition, we label the actions of animals
in 6 major classes (i.e., mammals, reptiles, amphibians,
birds, fishes, insects). For pose estimation, we label the
poses of animals in 5 major classes (i.e., mammals, reptiles,
amphibians, birds, fishes). Because different animals can
have vastly different anatomical structures across classes
(e.g., insects vs mammals), which poses a great challenge
for pose annotation, we thus label these five animal classes
which share similarities in their anatomical structures.

Figure 1. Distribution of clips of over 850 species of animals in 6
major animal classes classified based on their appearance, number
of limbs and how they move, and further divided into sub-classes.
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Figure 2. Examples of animals in 6 main animal classes

3. Diverse Range of Actions
Our dataset contains a diverse range of 140 actions. The

collection of actions and behaviors encompasses:
(1) movement, e.g., swimming, running, flying,
(2) transport, e.g., carrying in mouth,
(3) feeding, e.g., eating, biting, drinking,
(4) sensing, e.g., exploring, attending,
(5) resting, e.g., sleeping,
(6) maintenance, e.g., grooming, washing,
(7) communication, e.g., chirping,
(8) aggressive, e.g., attacking, spitting venom,
(9) defensive, e.g., retreating, displaying defensive pose,
(10) social, e.g., playing,
(11) affection, e.g., hugging,
(12) sexual, e.g., sexual display, copulation,
(13) life events, e.g., giving birth, laying eggs, hatching,
(14) other general actions, e.g., panting, flapping ears.
Hence, our dataset covers a broad range of actions seen

in nature.

4. More Examples
Here, we provide more examples of our video ground-

ing (Fig. 3), action recognition (Fig. 4), and pose estimation
(Fig. 5) tasks. The distribution of animals with its pose an-
notated is illustrated in Fig. 6.

Figure 3. Samples of the video grounding task. Given the language
description, we need to detect the corresponding time sequence.

Figure 4. More examples of actions. Rows 1 to 4 show how the
same set of actions differ across various animal classes. Row 5
shows examples of various actions in our dataset. Rows 6 to 9
show sample features of our dataset, ranging from diverse envi-
ronments to varying illumination and weather conditions.

Figure 5. Examples of animal poses in our dataset

Figure 6. Distribution of the 33K animal pose annotations in the 5
major animal classes



5. Details of the Proposed CARe Model

In this section, we present the implementation details of
our CARe model. We discuss in detail the architecture of
the model (Fig. 7) and how it is trained (Algorithm 1).

Figure 7. Architecture of our Collaborative Action Recognition
(CARe) model.

The backbone feature extractor E, the feature elabora-
tors Fgen and {F k

specific}Kk=1, and the classifier C form the
basic version of our model. Below we present the design of
each of them.

For the backbone feature extractor E, we adopt the early
part of the I3D architecture. It includes three 3D convolu-
tional layers E conv1, E conv2, and E conv3, two max-
pooling layers E maxpool1 and E maxpool2, and an in-
ception submodule of the I3D architecture E incept. Given
the input video x ∈ Rch×t×h×w (whereby the number
of channels ch, number of frames t, height h, width w
equals 3, 16, 180, and 320 respectively), it will be trans-
formed by E conv1, E maxpool1, E conv2, E conv3,
E maxpool2, and E incept sequentially to obtain the base
feature fbase ∈ Rch′×t′×h′×w′

, with ch′ = 256, t′ = 8,
h′ = 23, and w′ = 40.

Regarding the subsequent feature elaborators
{F k

specific}Kk=1 and Fgen, each of them consists of
two lightweight two-head self-attention layers [3]. Given
the base feature, the specific features {fk

specific}Kk=1 and
general feature fgen computed by the feature elaborators
have the size of ch′′ × h′′ × w′′, where ch′′, h′′, and w′′

equal 4, 12, and 20.
The final classifier C consists of one linear layer

C linear that maps the flattened and concatenated general
and specific features to action likelihoods y ∈ RM for the
M possible actions.

Besides components of the basic version of the CARe
model, the relevance evaluator R is included to compute

similarity scores for unseen animals. It consists of two lay-
ers, R conv1 and R conv2, which will be used to further
transform the base feature, and K layers {R lineark}Kk=1

to compute the set of similarity scores {wk}Kk=1. More
specifically, fbase will be first transformed by R conv1 and
R conv2. To obtain the similarity score for the k-th specific
feature elaborator wk, we flatten and concatenate the trans-
formed base feature and the specific feature fk

specific, which
will be fed into its respective layer R lineark to compute
wk.

Training and testing. Since the base feature extractor
follows the I3D architecture, we initialize its parameters
with the pre-trained I3D. The parameters of the base fea-
ture extractor will be optimized with an initial learning rate
of 0.001. Other components of our CARe model will be
randomly initialized and given a higher initial learning rate
of 0.01. SGD optimizers are used to update all components.
A summary of the training scheme can be found in Algo-
rithm 1.

Algorithm 1: Training Procedures of CARe
Model

Input : Data of K animal types {Dk}Kk=1
Learning rates α, β
Hyper-parameter λ

Output: Backbone feature extractor E
General feature elaborator Fgen

Specific feature elaborators {Fk
specific}

K
k=1

Classifier C
Relevance evaluator R

1 while not converged do
2 1. Update E, Fgen, {Fk

specific}
K
k=1, C:

3 Calculate the cross-entropy losses {ℓk}Kk=1 for {Dk}Kk=1

using E, Fgen, their respective {Fk
specific}

K
k=1, and C;

4 Update the parameters for E, Fgen, {Fk
specific}

K
k=1 and

C;
5 2. Update R:
6 Sample 1 type of animal as the meta-test Dmtest and the

other K-1 types of animal as meta-train Dmtrain;
7 2.1 Meta-train:
8 Calculate cross-entropy losses ℓmtrain for Dmtrain;
9 Update the parameters for R using:

10 ϕ′ ← ϕ− α▽ϕℓmtrain(ϕ);
11 2.2 Meta-test:
12 Calculate the cross-entropy loss ℓmtest for Dmtest;
13 2.3 Meta update:
14 Update the parameters ϕ of R using:
15 ϕ← ϕ− β((1− λ)▽ϕℓmtrain(ϕ) + λ▽ϕℓmtest(ϕ′));
16 end

In our experiments, 16 frames from each video sequence
are randomly selected and used as the input. The model
was trained for 40 epochs with a 2-GPU implementation.
The initial learning rates were used for the first 30 epochs.
The reduced learning rates that are 10% of the initial ones
were used to train the model for 10 additional epochs.
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