
BoxeR: Box-Attention for 2D and 3D Transformers

Duy-Kien Nguyen1 Jihong Ju2 Olaf Booij2 Martin R. Oswald1 Cees G. M. Snoek1

Atlas Lab - 1University of Amsterdam 2TomTom
{d.k.nguyen, m.r.oswald, cgmsnoek}@uva.nl {jihong.ju, olaf.booij}@tomtom.com

Abstract

This supplementary material provides more information
about our methodology, more implementation details for
better reproducibility as well as additional qualitative results.

Contents
A. Additional Results . 1
B. Prediction Head in BoxeR. 1
C. Losses in BoxeR Training . 2
D. Multi-scale feature maps for BoxeR 2
E. More Implementation Details . 2
F. More Qualitative Results . 4

A. Additional Results
Here, we provide a comparison on the effects of dropout

during the training of BoxeR. Specifically, we evaluate
BoxeR-2D with and without dropout in Table 1 along with
the speed (fps), # params, and FLOPs computation of our
architecture.

B. Prediction Head in BoxeR
In order to take advantage of spatial information from

the box-attention module, we design the prediction head
to regress relative offsets w.r.t. the corresponding reference
window. The reference window is used as the initial guess
of the bounding box in both object proposal and detec-
tion stage. We denote σ and σ−1 as the sigmoid and the
inverse sigmoid function, respectively. This design allows
the prediction head of BoxeR to utilize the information of
features in box-attention which learn to predict offsets from
a reference window. Note that, we use 0=σ−1(0.5) for the
height prediction of the 3D bounding boxes since we have
no information in the reference window.
BoxeR-2D. Given a pre-defined reference window
bq=[x, y, wx, wy] ∈ [0, 1]4, the predicted bounding box

b̂q=
[
σ
(
∆x+σ−1(x)

)
, σ
(
∆y+σ−1(y)

)
, σ
(
∆wx

+σ−1(wx)
)
,

σ
(
∆wy

+σ−1(wy)
)]

where ∆x, ∆y, ∆wx , and ∆wy are

offsets of the bounding box center, width, and height
predicted by the prediction head.

In the object proposal stage, the prediction head contains
a 3-layer perceptron with a ReLU activation function and a
hidden dimension d for the offsets prediction and a linear
projection for the bounding box binary classification (i.e.,
foreground and background). The encoder features of the top
scoring proposals are picked as object queries in the decoder,
while its bounding boxes serve as its reference windows (the
object queries and encoder features do not have gradient
flow).

In the prediction stage, the same architecture is used to
predict the offsets from the reference windows and to clas-
sify object categories. The mask prediction head contains a
deconv layer with 2×2 kernel size and stride 2 followed by
two 1×1 conv layers with ReLU activation function and hid-
den dimension d. Similar to [2], the last conv layer outputs a
mask prediction of 28×28× num class for each bounding
box.
BoxeR-3D. Given a reference window
bq=[x, y, wx, wy, θ] ∈ [0, 1]5, the predicted bounding box

b̂q=
[
σ
(
∆x+σ−1(x)

)
, σ
(
∆y+σ−1(y)

)
, σ
(
∆z

)
, σ
(
∆wx+

σ−1(wx)
)
, σ
(
∆wy

+σ−1(wy)
)
, σ
(
∆wz

)
, σ
(
∆θ+σ

−1(θ)
)]

where ∆x, ∆y , ∆z , ∆wx , ∆wy , ∆wz , and ∆θ are the offsets
of the bounding box center, length, width, height, and angle
predicted by the prediction head. Note that, we normalize
the center and size of the 3D bounding box by the detection
range. The angle of the 3D bounding box is converted to the
range [0, 2π] and normalized by 2π.

The prediction head in both the object proposal and pre-
diction stage shares the same architecture: a 3-layer percep-
tron with a ReLU activation function and a hidden dimension
d for offsets prediction of the 3D bounding boxes, and a lin-
ear projection for the classification task (binary classification
for object proposal and multi-class classification for predic-
tion). Similarly, the prediction head is applied to each of the
encoder features in the object proposal stage. Since BoxeR-
3D uses reference windows of three angles per query, the
prediction head outputs three object proposals each of which
corresponds to a reference window of one angle. The top

1

AP↑ APS↑ APM↑ APL↑ APm↑ APm
S ↑ APm

M↑ APm
L↑ # params FLOPs fps

Box-Attention only 48.7 31.6 52.3 63.2 - - - - 39.7M 167G 17.3
w/ dropout 47.8 30.9 50.6 62.1 - - - - 39.7M 167G 17.3
Instance-Attention 50.0 32.4 53.3 64.5 42.7 22.7 45.9 61.5 40.1M 240G 12.5

Table 1. More BoxeR-2D ablation on the COCO 2017 val set using a R-50 backbone pretrained on ImageNet. By removing dropout
during training, our BoxeR-2D shows better performance in all metrics without any extra computation. Note that we report the inference
speed of our network including the post-processing time.

BoxeR-2D BoxeR-3D

Figure 1. Multi-scale feature maps for BoxeR-2D (left) and BoxeR-3D (right).

scoring proposals are picked in the same way as in BoxeR-
2D.

C. Losses in BoxeR Training
We review the losses that are used during our training

in Table 2. BoxeR-2D is trained with a classification and a
2D box loss for the object proposal stage. In the prediction
stage, classification, 2D box, and mask loss are used. The
Hungarian matcher [4] in BoxeR-2D does not use the mask
cost but only the classification and box cost as in [8].

For 3D object detection, we train BoxeR-3D with a clas-
sification and 3D box loss for both the object proposal and
prediction stage. Due to the limitation of our computational
resources, we use the same loss weights as in BoxeR-2D
except for the weight of the angle loss. Following [1], the
3D Hungarian matcher is designed to be consistent with our
setting of loss weights.

D. Multi-scale feature maps for BoxeR
The multi-scale feature maps are constructed for BoxeR-

2D and BoxeR-3D as in Fig. 1. In end-to-end object de-
tection and instance segmentation, we use ResNet [3] and
ResNeXt [7] as backbones for BoxeR-2D. As discussed in
Section 4, we follow [8] to construct our multi-scale feature
maps.

In end-to-end 3D object detection, we first extract bird’s-
eye view image features from PointPillar [5] with a grid size
of (0.32m, 0.32m). The detection range is [−75.0m, 75.0m]

H x W x C

Conv 3 x 3 - 256, stride 1

Conv 3 x 3 - 256, stride 1

Conv 3 x 3 - 512, stride 1

Conv 3 x 3 - 512, stride 1

Conv 3 x 3 - 512, stride 1

Conv 3 x 3 - 512, stride 2

Conv 3 x 3 - 1024, stride 1

Conv 3 x 3 - 1024, stride 2

Figure 2. Convolutional backbone for BoxeR-3D.

for the x and y axis, and [−4m, 8m] for the z axis. This
results in a feature map x ∈ RH×W×C where H=W=468
and C=128. In order to construct multi-scale feature maps,
we use a convolutional backbone as in Fig. 2. Note that each
convolution layer is followed by a batch normalization layer
and a ReLU activation layer.

E. More Implementation Details

Initialization of multi-scale box-attention. Unlike de-
formable attention [8], our box-attention module does not
require a complicated initialization. Weight and bias param-
eters of the linear projection for generating attention weights

Box Loss Angle Loss Classification Loss Mask Loss
L1 loss GIoU loss L1 loss Focal loss BCE loss DICE/F-1 loss

BoxeR-2D 5 2 n/a 2 5 5
BoxeR-3D 5 2 4 2 n/a n/a

Table 2. Losses and weights used in training of BoxeR-2D and BoxeR-3D (n/a: not available). We use the same loss weights between
BoxeR-2D and BoxeR-3D.

Figure 3. Qualitative results for object detection and instance seg-
mentation generated by BoxeR-2D in the COCO 2017 test-dev
set.

are initialized to zero. For predicting the offsets of the refer-
ence windows, weight and bias parameters are initialized to
zeros and randomly, respectively. By initializing uniform at-
tention weights, box-attention gathers all information within
the attended region to make its decision. Other parameters
are randomly initialized.
Initialization of prediction head. Following the initializa-
tion of the box-attention module, we initialize weight and
bias parameters of the last layer in the 3-layer perceptron for
offsets prediction to zero. Other parameters are randomly
initialized. By doing so, the prediction head treats reference
windows as its initial guess which is consistent with the

Figure 4. Failure cases of BoxeR-2D. BoxeR-2D fails to predict
very small objects in low light conditions. The last image shows
that BoxeR-2D is able to predict the object bounding box and mask
but fails to classify the category.

box-attention module.
Spatial Encoding. Each query q ∈ Rd in image features is
assigned a reference window bq=[x, y, wx, wy] where x, y
are coordinates of the window center corresponding to the
query position and wx, wy are width and height of the refer-
ence window. As in [1], we use a fixed absolute encoding
to represent {x, y} which adopts a sinusoid encoding to the
2D case. Specifically, x and y are independently encoded
in d

2 features using sine and cosine functions with differ-
ent frequencies. The d channel position encoding is their
concatenation. Similarly, we get a d channel size encoding
of {wx, wy}. The final spatial encoding of query q is the
summation of both position and size encodings.
Hyperparameter settings in BoxeR. Within its box
of interest, the box-attention module samples a grid of
2×2 (m=2) while the instance-attention module samples
a grid of 14×14 (m=14). We set the hidden dim of
BoxeR, d=256; the hidden dim of feed-forward sub-layers,
dfeed-forward=1024; the number of attention heads, l=8. This
applies to both BoxeR-2D and BoxeR-3D. BoxeR-2D con-
tains 6 encoder and decoder layers (S=6) while BoxeR-3D
consists of 2 encoder and decoder layers (S=2).

During inference of BoxeR-2D, given BoxeR-2D decoder
of S decoder layers, we only output xmask

S ∈ RN×m×m×d
in the last decoder layer to speed up its prediction time.
Details of the transformation functions. Our transla-
tion and scaling functions predict offsets ∆x,∆y,∆wx ,∆wy

w.r.t. the reference window bq=[x, y, wx, wy] ∈ [0, 1]4 of
query q using a linear projection on q as below

Figure 5. Qualitative results for 3D object detection generated by BoxeR-3D on the Waymo val set.

∆x = (qW>x + bx) ∗ wx
τ

, (1)

∆y = (qW>y + by) ∗ wy
τ

, (2)

∆wx = max(qW>wx
+ bwx , 0) ∗ wx

τ
, (3)

∆wy = max(qW>wy
+ bwy , 0) ∗ wy

τ
, (4)

where W and b are weights and biases of the linear projec-
tions; τ=8 is the temperature hyperparameter. The multipli-
cation of the window size {wx, wy} helps the prediction of
the linear projection to be scale-invariant. For angle predic-
tion in 3D object detection, the offset is predicted as

∆θ = (qW>θ + bθ) ∗
1

τθ
. (5)

Implementation details of BoxeR-3D. During training of
BoxeR-3D, following [6] we use random flipping along the x
and y axis, global scaling with a random factor sampled from
[0.95, 1.05], global rotation around the z axis with a random
angle sampled from [−π4 ,

π
4]. The ground truth sampling

augmentation is also conducted to randomly “paste” ground-
truth objects from other frames to the current one. Similar to
the BoxeR-2D, we take the top-300 scoring encoder features
as object queries along with the corresponding predicted
bounding boxes as their reference window for the BoxeR-3D
decoder. In the final prediction, we pick 125 predictions with
the highest scores.

F. More Qualitative Results

2D object detection and instance segmentation. We
show extra qualitative results for object detection and in-
stance segmentation of the BoxeR-2D with a R-101 back-
bone in Fig. 3 and Fig. 4.
3D object detection. We show extra qualitative results
for 3D object detection of the BoxeR-3D in Fig. 5. The
ground-truth boxes are denoted in blue while the predicted
pedestrian and vehicle are in red and green. It can be seen
that BoxeR-3D gives a high accuracy for vehicle predic-
tion. Note that, BoxeR-3D detects some vehicles that are
missed by annotators. However, BoxeR-3D still struggles
with detecting all pedestrians.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
3

[2] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask R-CNN. In ICCV, 2017. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
2

[4] Harold W. Kuhn. The Hungarian method for the assignment
problem. Naval Res. Logist. Quart, 1955. 2

[5] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, 2019. 2

[6] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi,
Xiaogang Wang, and Hongsheng Li. PV-RCNN: point-voxel

feature set abstraction for 3d object detection. In CVPR, 2020.
4

[7] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 2

[8] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 2

	. Additional Results
	. Prediction Head in BoxeR
	. Losses in BoxeR Training
	. Multi-scale feature maps for BoxeR
	. More Implementation Details
	. More Qualitative Results

