
Supplementary Material
The appendix complements our method by a detailed

comparison with prior works, transformations between
image coordinates and the world coordinates, a pseudocode
representation of the proposed 3D geometry pre-clustering
step, an additional sampling strategy for spatial-temporal
edge costs, our lifted multicut solver, and a method to
create tracking predictions in 3D space. Along with it,
we present the performance of pre-processing the spatial-
temporal tracking graph and ablation studies on the final
edge costs accuracy, which depends on our pre-clustering
algorithm. Lastly, we show the performance of LMGP
compared with state-of-the-art single-camera methods,
computational time, and some qualitative tracking results
on WILDTRACK and Campus dataset.

A. LMGP Compared with Other Multi-
Camera Trackers

We present in Table 5 the main differences between our
LMGP method with other baselines. In summary, we utilize
image correspondences for each object at each timeframe
as the Centralized Representation strategy to correct ID-
Switch errors generated by tracklets in Single View-based
methods. On the contrary, using nodes as tracklets allows
us to reduce the computational cost in the association step
significantly, implying our tracker runs reasonably fast and,
therefore, be feasible to deploy it in real-world tracking ap-
plications (Table 10).

Method Single-Camera
Tracklets

Centralized
Representation Online

LMGP (Ours) X X
MLMRF [28] X X

STVH [42] X
DMCT [47] X X
GLMB [32] X X

DyGLIP [33] X X

Table 5. Comparison of our LMGP w.r.t. recent multi-camera
trackers. Single camera tracklets signifies for trackers whose in-
puts can be used as tracklets. Centralized representation refers to
usage of relationships among detections at each timeframe. On-
line indicates for only current frames are used.

B. Transformation From Camera Coordinates
to Word Coordinates on The Ground
Plane

In this section, we describe two transformations which
compute a corresponding 3D position X̃⇡ (inhomogeneous)
on a ground plane ⌧ for each point x in the image coordinate

Figure 5. Projection scheme for the pinhole camera model. Given
a x point in the image plane, X⌧ is its spatial point (homogeneous
coordinate) in the ⌧ ground plane. Image taken and adapted from
[15].

and the world coordinate C̃ of the camera centre C for the
pinhole camera model (Figure 5).

We denote by X a point in space with world coordinates
represented by a homogeneous vector (X,Y,Z, 1)T 2 R4.
Its homogeneous coordinates on the image plane x 2 R3

can be obtained by:

x = PX (16)

where P is the 3⇥4 homogeneous camera projection matrix
written as:

P = K[R|t], (17)
with K being the 3⇥ 3 intrinsic matrix and [R|t] being the
3⇥ 4 extrinsic matrix where R is the 3⇥ 3 rotation matrix
and t is the 3⇥ 1 translation vector.

Let M = KR and p4 is the last column vector of P, the
matrix P then can be written in the form

P = [M|p4]. (18)

Since K and R in the finite projective camera model [15]
are assumed to be non-singular, this means that M is also
non-singular. We then can compute C̃ by:

C̃ = �M�1p4 (19)

To specify X⇡ on the ground plane ⇡, we need further
constraints [15, 36]. In this setting, the coordinate systems
of the camera and the surrounding space both have the z-
axis as the height axis and the back projection line of an im-
age point x hits the ground exactly when the z-coordinate
of this line is set to zero since the origin of the spatial coor-
dinate system is lying on the ground. The inhomogeneous
coordinate X̃⇡ 2 R3 of X⇡ given a point x in the image
coorindate is estimated by:

X̃⇡ = � C̃3

X̃3

M�1x+ C̃ (20)

where C̃3 and X̃3 are obtained by:

[ X̃1, X̃2, X̃3]
T = M�1x

[ C̃1, C̃2, C̃3]
T = C̃.

(21)



C. Pre-Clustering Algorithm
We present in Algorithm 1 the 3D geometry projection-

based pre-clustering whose input is a set of detections
across cameras at each time frame t and the output is a set
of clusters for each object appearing in the scene. The lin-
ear assignment problem at line 8 exploits the 3D geome-
try constraints among points in the same object depicted in
Figure 6-a. The code line 13 in algorithm 1 will verify in
reverse directions (confident connections) for nodes in an
initial cluster Ib to alleviate errors attained in inaccurately
calibrated cameras and noisy detections. Figure 6-b illus-
trates this procedure with I1 = {2, 3, 5, 6, 7}.

Algorithm 1: Pre-Clustering
Input: Timeframe t, detections B, r is a radius to scan nearby

detections.
Output: C = {Cb : b 2 B, time(b) = t} is a set of clusters for

each detection at timeframe t.
1 D

t  {b 2 B : time(b) = t}
2 C  ;
// Generate matches for each object

3 for b 2 D
t do

// Initialize
4 j  cam(b), Ib  ;, Cb  ;

// Define matching candidates in cam j

5 B
t,j(b) = {b0 2 D

t : dist(h(b), h(b0))  r, cam(b0) = j}
// Check one way connection

6 for camera j
0 6= j do

// Define matching candidates in cam j0

7 B
t,j

0
(b) = {b0 2 D

t : dist(h(b), h(b0))  r, cam(b0) =
j
0}

8 Solve linear assignment problem between B
t,j(b) and

B
t,j

0
(b) with costs dist(h(b1), h(b2)) for b1 2 B

t,j(b),
b2 2 B

t,j
0
(b)

9 if b is matched to some node b
0 2 B

t,j
0
(b) then

10 Ib  Ib [ {b0}
11 end
12 end

// Clustered points must be matched both
ways (confident connections)

13 Cb = {b0 2 Ib : b 2 Ib0}
// Update set of clusters

14 C  C [ {Cb}
15 end
16 return C

D. Learning Spatial-Temporal Affinity and
Correcting ID-Switch Positions

D.1. Sampling Training Data
We describe in Algorithm 3, 4 the training data sampling

for fspatial, ftemporal networks used in generating affinity
costs (Eqs. 23, 24), where Uni(a, b) is the uniform distri-
bution between a and b, id(x) is the single ID of tracklet
x. Poss, Negs are sets of samples in the same and differ-
ent objects connected by spatial edges. Likely, Post, Negt
are outputs for temporal edges. For fsplit, we create the
training data by running the trained CenterTrack on the val-
idation set in each dataset.

Figure 6. (a) The geometry constraint of 2D foot points belong
to the same object on the 3D space, (b) An illustration of our pre-
clustering in WILDTRACK with 7 cameras where the object is not
visible at camera 4.

D.2. Network Architecture

For both fspatial, ftemporal and fsplit, we employed
the same architecture as depicted in Figure 7 given
the input feature vectors with d dimensions. We train
fspatial, ftemporal with 2 epochs and fsplit with 30 epochs
using Adam optimizer [27]. A modified F1 loss func-
tion [24] is also applied during the training process to miti-
gate problems caused by imbalanced training data.

Figure 7. The binary network architecture used to train for
fspatial, ftemporal and fsplit.

E. Solver for Lifted Multicut for Tracking

Since the lifted multicut problem is NP-hard to
solve [25], we resort to efficient heuristics. We first com-
pute a preliminary partition with the Greedy Additive Edge
Contraction (GAEC) algorithm, followed by an improve-
ment step with the Kernighan-Lin local search (KL-Local)
procedure [25]. We summarize the used solver in an Al-
gorithm 2. These heuristics have been shown to yield high
quality solutions in practice [29].



Algorithm 2: Solver for LMGP Tracker
Input: Spatial-temporal graph

G = (V, F ), F = E
t [ E

s [ E
c

Edge costs cet , ces , M
Output: Edge label function y : F ! {0, 1}

1 y  Run GAEC (G, cet , ces , M)
2 y  Run KL� Local (G, cet , ces , M, y)
3 return y

F. Generating Tracking Predictions in 3D
Space

Given clusters of the spatial-temporal tracking graph, we
interpolate trajectories in 3D-coordinates. Since a cluster
consists of a set of tracklets, which in turn consist of a set
of detections, we directly associate a cluster with its under-
lying set of detections. Hence, let a cluster consisting of
detections {b1, . . . , bs} be given. At each timestep t such
that there exists at least one detection in that timestep, we
obtain a 3D position through

p
t

avg
=

P
i:time(bi)=t

h(bi)

|{i : time(bi) = t}|
p
t

3D = argmax
p:kp�pt

avgkr

X

i:time(bi)=t

k⇡cam(bi)(p), bik
2
iou

(22)

where ⇡j(p) is the projection of a 3D cylinder centering at
p to a rectangle bounding box on 2D coordinates of camera
j. The above interpolation step in Equation 22 first takes
the average position of the 3D-projections of all relevant
detections of a given timepoint. Second, a 3D position in
the vicinity of the mean position is calculated such that the
reprojection error w.r.t. IoU is minimized.

G. Experimental Results

G.1. Implementation Details

Generating Tracklets For both PETS-09 [12], Cam-
pus [44], and WILDTRACK [7] datasets, we use Center-
Track [53] trained on the CrowdHuman dataset [37] and
pre-trained it on training sequences in each dataset with
the following settings: heatmap noise 0.05 , tracklets con-
fidence 0.4, false positive rate 0.1, and batch size of 32 im-
ages. All other parameters are identical with the default set-
tings. Given trained models, tracklets are generated by run-
ning CenterTrack with the provided detections and employ
a tracking threshold 0.2, pre-threshold 0.4, which are scores
for predicting a bounding box and feeding the heatmap to
the next frame, respectively.

Algorithm 3: Sampling spatial edges
Input: � = {⌧ : cam(⌧) 2 {1, 2, . . . ,m}} is a set of all

ground truth trajectories across m cameras.
n is the number of random sampling.

Output:
Poss = {(x, y) : cam(x) 6= cam(y), id(x) = id(y),

time(x) \ time(y) 6= ?}
Negs = {(x, y) : cam(x) 6= cam(y), id(x) 6= id(y),

time(x) \ time(y) 6= ?}
// Initialize

1 Poss  ;, Negs  ;
2 repeat
3 for each camera j 2 {1, . . . ,m} do
4 for each ⌧ = (b1, b2, . . . , b|⌧ |) : cam(⌧) = j do

// Randomly remove an interval in ⌧

5 i ⇠ Uni(1, |⌧ |), k ⇠ Uni(i, |⌧ |� i� 1)
6 x (b1, . . . , bi�1), y  (bi+k+1), . . . , b|⌧ |)
7 Rj

⌧
 {x, y}

8 end
9 end

// Initialize balanced sampling
10 nbalance  0

// Generate positive pairs
11 for each ⌧, ⌧

0 : cam(⌧) 6= cam(⌧ 0) and id(⌧) =
id(⌧ 0) and time(⌧) \ time(⌧ 0) 6= ; do

12 for each (x, y) 2 Rcam(⌧)
⌧ ⇥ Rcam(⌧ 0)

⌧ 0 do
13 Poss  Poss [ {(x, y)}
14 nbalance  nbalance + 1
15 end
16 end

// Generate negative pairs
17 for each ⌧, ⌧

0 : cam(⌧) 6= cam(⌧ 0) and id(⌧) 6=
id(⌧ 0) and time(⌧) \ time(⌧ 0) 6= ; do

18 for each (x, y) 2 Rcam(⌧)
⌧ ⇥ Rcam(⌧ 0)

⌧ 0 do
// Balanced Sampling

19 if nbalance > 0 then
20 Negs  Negs [ {(x, y)}
21 nbalance  nbalance � 1
22 end
23 end
24 end
25 until n times
26 return Poss, Negs

Multi-view Appearance Feature We utilize DG-Net [52],
one of the best performing methods for re-identification to
extract embedding vectors for detections. To train DG-Net,
the training data is selected from pre-clustering of unoc-
cluded detections C

0
b

for each object (Section 3.1, main
paper). We use the best models trained on Market-151 [51]
and DukeMTMC-Reid [34] as the “teacher network”
in DG-Net. Noting that pre-training on other datasets
is a common practice in MOT, and pre-training on the
above datasets was e.g. done in [21]. While our method
benefits from strong appearance features from DG-Net,
these features alone are not mainly responsible for our
performance, see Table 1 and 2 in the main paper with
LMGP w/o Pre-Clustering, which mainly relies on
appearance features and does not include 3D-information.



Algorithm 4: Sampling temporal edges
Input: � = {⌧ : cam(⌧) 2 {1, 2, . . . ,m}} is a set of all

trajectories across m cameras.
n is the number of random sampling.

Output:
Post = {(x, y) : cam(x) = cam(y), id(x) = id(y),

time(x) \ time(y) = ?}
Negt = {(x, y) : cam(x) = cam(y), id(x) 6= id(y),

time(x) \ time(y) = ?}

// Initialize
1 Post  ;, Negt  ;
2 repeat
3 Select randomly camera j

// Initialize balanced sampling
4 nbalance  0
5 for each ⌧ = (b1, b2, . . . , b|⌧ |) : cam(⌧) = j do

// Randomly remove an interval in ⌧

6 i ⇠ Uni(1, |⌧ |), k ⇠ Uni(i, |⌧ |� i� 1)
7 x (b1, . . . , bi�1), y  (bi+k+1, . . . , b|⌧ |)

// Generate positive pairs
8 Post  Post [ {(x, y)}
9 R⌧  {x, y}

10 nbalance  nbalance + 1
11 end

// Generate negative pairs
12 for each ⌧, ⌧

0 : id(⌧) 6= id(⌧ 0) do
13 for each (x, y) 2 R⌧ ⇥R⌧ 0 : time(x)\ time(y) = ; do

// Balanced Sampling
14 if nbalance > 0 then
15 Negt  Negt [ {(x, y)}
16 nbalance  nbalance � 1
17 end
18 end
19 end
20 until n times
21 return Post, Negt

G.2. Ablation Study of Affinity Costs
Since the performance of a tracking system depends

highly on the accuracy of local connections, this section val-
idates the effect of several proposed affinities, which form
our edge costs cet and ces . In particular,

cet = ftemporal(c
app
index(⌧, ⌧

0), cfw,t(⌧, ⌧ 0), cbw,t(⌧, ⌧ 0),

t(⌧, ⌧ 0))
(23)

ces = fspatial(c
fw,s(⌧, ⌧ 0), cbw,s(⌧, ⌧ 0), capp(⌧, ⌧ 0),

c
avg3D(⌧, ⌧ 0), cpc(⌧, ⌧ 0))

(24)

where index 2 {best,min,max, avg, std}, described at
the Equation (4), Subsection 3.2 in the main paper. For spa-
tial cost in Equation 24, the appearance part capp(⌧, ⌧ 0) only
uses the visible detections at current cameras.

Table 6 and 7 present ablation studies on WILDTRACK
dataset for different settings where positive/negative refers

to edge pairs whose nodes are in the same/distinct pedestri-
ans.

In Table 6, we compare our full settings for temporal
edge costs cet in Equation 23 and compare with: (i) without
using forward/backward prediction (second row) and (ii)
without utilizing pre-clustering results to query images at
other cameras (third row), i.e., we only measure appearance
affinities for ⌧ and ⌧

0 in the current camera. It can be ob-
served that pre-clustering is the most critical factor; thereby,
the total accuracy will decline from 99% down to 94% in the
Acc metric. Secondly, the forward/backward affinities also
contribute significantly to the final performance with a 2%
improvement.

For spatial edges in Table 7 we examine the impact of
two ingredients: (i) forward/backward prediction (second
row) and (ii) without applying our novel prior-3D based on
pre-clustering agreement affinity (third row). The obtained
results confirm that prior-3D affinity is the most influen-
tial affinity that is able to boost edge costs accuracy up to
7%, yielding 100% accuracy for both positive and negative
edges. Similarly as for spatial edges, the forward/backward
affinities also contribute to complement our prediction with
a growth of approximately 2%.

Method Type Precision % Recall % F1 % Acc %

Full settings positive 98 90 94 99negative 99 100 100

W/o Forward, backward positive 95 89 92 97negative 97 98 98

W/o Pre-clustering positive 94 88 91 94negative 95 94 95

Table 6. Temporal edge costs performance with variant settings
over 50565 samples in which 3678 edges are positive and the re-
maining of 46887 are negative.

Method Type Precision % Recall % F1 % Acc %

Full settings positive 100 100 100 100negative 100 100 100

W/o Forward, backward positive 97 99 98 98negative 98 99 98

W/o Prior-3D positive 92 94 93 93negative 94 93 94

Table 7. Spatial edge costs performance with different configura-
tions evaluated over 11026 samples with 3215 edges are positive
and 7811 remaining are negative.

G.3. Performance of Splitting Tracklets in the
Spatial-Temporal Tracking Graph

We now demonstrate that the pre-clustering is help-
ful during the construction of the spatial-temporal tracking
graph. In particular, we experimented on the WILDTRACK
dataset due to its severe occlusions with two current state of
the art single-camera pedestrian trackers: CenterTrack [53]



Figure 8. Qualitative tracking results on WILDTRACK at three overlapping camera views (zoom in for better visualization). The superi-
ority of multi-cameras can be seen in the two following scenarios. First, even an object 20 is fully occluded at frame 12 in Cam 5 (green
arrow), our tracker could still track this target by establishing inter-camera correspondences in Cam 1 and 7 (red arrow). Second, at frame
22 in Cam 1, the ID-Switch error will occur between ID 141 and 204 (yellow and orange arrows) due to ambiguous appearance affinities;
fortunately, we could avoid this error by harnessing corresponding detections for those objects in Cam 7, which are separable.

and Tracktor++ [1]. Given tracklets computed by these
trackers, we go through each tracklet and assign ”correct”
label for a pair of two consecutive detections if they are of
the same object and as an ”ID-Switch” label otherwise. Ta-
ble 8 shows our performance. The results indicate that we
can detect and correct up to 97% of ID-Switches w.r.t. the
F1 score for both CenterTrack and Tracktor++ over a to-
tal of 310 resp. 280 tracklets on the testing frames. Fur-
thermore, we were also able to retain correct consecutive
detection for both trackers (100% F1 score). Obtaining
such high-quality tracklets not only allows us to reduce ID-
Switch errors significantly but also allows for better affinity
computations, resulting in an overall better final tracking
result.

Method Type Precision % Recall % F1 % #Samples

CenterTrack [53] Correct 100 100 100 3268
ID-Switch 96 98 97 310

Tracktor++ [1] Correct 100 100 100 3256
ID-Switch 97 96 97 280

Table 8. Our performance in reducing ID-switch errors and retain-
ing correct detection pairs in the tracklet splitting step. The result
is measured with two state-of-the-art single-camera trackers.

Method IDF1 " MOTA " MT " ML # FP # FN # IDs #
Deep MCD + ptrack [7] 64.3 52.4 83.4 10.7 1023 2239 711

Tracktor++ [1] 65.0 60.4 68.3 8.7 819 637 272
CenterTrack [53] 67.4 67.5 74.6 3.4 649 494 278

LMGP-single cam, detection 69.6 66.4 75.3 5.2 690 575 128
LMGP-single cam, tracklets 71.2 72.8 82.5 2.7 755 394 154
LMGP-multi-cam, tracklets 98.2 97.1 97.6 1.3 71 7 12

Table 9. Our tracking performance compared to state of the art
single camera methods on WILDTRACK.

G.4. Single-Camera Benchmark
We provide experimental results on WILDTRACK (us-

ing the multi-camera setup and then projecting the re-
sult to a single camera, namely LMGP-Multi-cam,
tracklets) compared to three modern single camera
pedestrian tracking methods in Table 9. Furthermore, we
also evaluate LMGP with a pure single-camera approach,
including (i) using detections in the tracking graph (which
reverts to the model of [40]) and without pre-clustering
or other 3D-geometry based components (LMGP-single
cam, detection); (ii) using CenterTrack tracklets in-
stead of detections and our full model (LMGP-single
cam, tracklets).

As we mentioned, even with the best methods, the
single-camera approach is still insufficient under severe oc-
clusions. Considering large improvements on all metrics,
we argue that the multi-camera strategy convincingly im-



Figure 9. Qualitative tracking results in the Garden 1 in Campus dataset at three overlapping camera views (zoom in for better visualization).
The benefit of the multi-camera approach can be found in two typical situations. First, at frame 193 (left column), two objects at the pink
and green arrows in Cam 3 were not visible in this view; however, we could overcome these missing positions by using information from
Cam 4. Similarly, at frame 1417, two objects at yellow and purple arrows are occluded in Cam 3. Fortunately, leveraging visible detections
in Cam 4 and Cam 2, we can continue tracking these objects.

proves upon the single-camera one in crowded settings.

G.5. Running Time

Dataset #Camera #Frame/Cam Running Time Speed (fps)
WILDTRACK 7 400 213 1.9
PETS-09 S2-L1 3 795 147 5.4
PETS-09 S2-L2 3 436 135 3.2
PETS-09 S2-L3 3 240 111 2.2

Table 10. Running time and speed of the LMGP tracker on multi-
camera sequences.

We show the running time of our tracker on two multi-
camera datasets in Table 10, which includes both feature ex-
traction and data association linking steps. We implemented
our tracker in C++ on a Intel(R) Core(TM) i7-9800X CPU
machine with 16 cores and 126 GB memory. Besides, four

NVIDIA TITAN RTX GPUs with 24GB memory are em-
ployed for parallel computation in appearance feature ex-
tractions and running the pre-clustering. In short, we con-
clude that our tracker runs reasonably fast; therefore, it is
feasible to deploy it in real-world tracking applications.

H. Qualitative Results
Our qualitative tracking results are illustrated in Figure

8 and Figure 9 for WILDTRACK and Campus, respec-
tively, with three overlapping camera views. It is evident
that monocular pedestrian tracking is insufficient to capture
all objects due to highly crowded and cluttered scenes. For
example, the target at the green arrow in Cam 5 at frame 12
in WILDTRACK is entirely occluded by other objects (Fig-
ure 8). In such situations, incorporating multiple views is a
reasonable way to improve the total tracking performance.


