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A. Weights for the base fusion

Since the base component only contains low frequencies
and cannot be super-resolved, we propose a simple pipeline
consisting of i) alignment of the LR base components Bi to
the reference, ii) temporal fusion via weighted average to
attenuate noise, iii) upscaling using bilinear interpolation.
For the temporal fusion the weights in the weighted average
are simply the exposure times:

BLR(x) =

∑
i eiWarp(BLRi (x))∑

i ei
(S1)

In this section we will provide a justification for this choice,
which is based on two approximations.

Approximate noise model for the base. The base results
from the convolution with a Gaussian kernel G. At pixel x
we have

BLRi (x) =
∑
h

G(h)ILRi (x+ h).

Assuming the signal-dependent Gaussian noise model of
Eq. (2)1, we have that BLRi (x) also follows a Gaussian
distribution with the following mean and variance:

E{BLRi (x)} =
∑
h

G(h)ILRi (x+ h)

V{BLRi (x)} =
a

ei

∑
h

G2(h)ILRi (x+ h) +
b

e2i

∑
h

G2(h).

We are going to assume that the clean LR image ILRi varies
smoothly in the filter support, and thus

E{BLRi (x)} ≈ ILRi (x), V{BLRi (x)} ≈ αeiILRi (x) + β

e2i
.

(S2)

1Tables, figures and equations in the supplementary material are labeled
S1, S2, . . . to differentiate them from references to the main paper.

where α = a
∑
hG

2(h) and β = b
∑
hG

2(h). This rough
approximation allows us to use a signal-dependent Gaus-
sian noise model like (2). The approximation is only valid
in regions where the image is smooth (away from edges,
textures, etc.). However, these are the regions in which we
are mainly interested, since it is where the low frequency
noise present in the base becomes more noticeable.

Approximate MLE estimator for the weights. After
alignment, for a given pixel x we have different values ac-
quired with varying exposure times, which we are going to
denote as zi = Warp(BLRi (x)) to simplify notation. We
also have the corresponding clean LR base images BLRi ,
and we are going to assume that they coincide after align-
ment, i.e. y = Warp(BLRi )(x) for i = 1, ...,m. We would
like to estimate y from the series of observations

zi ∼ N
(
y, σ2

i (y)
)
, σ2

i (y) =
αeiy + β

e2i
.

This problem occurs in HDR imaging, when estimating
the unknown irradiance given noisy acquisitions with vary-
ing exposure times [1, 6]. Each zi is an unbiased estimator
of y. Therefore, if the variances were known, we can mini-
mize the MSE with the following weighted average, where
the weights are the inverse of the variances:

ŷ =

∑
i wizi∑
i wi

, wi =
e2i

αeiy + β
. (S3)

The problem is that the weights depend on the unknown y.
In [6] Granados et al. solve this problem with an iterative
weighted average:

w0
i =

e2i
αeizi + β

.

wki =
e2i

αeiŷk + β
, ŷk+1 =

∑
i w

k
i zi∑

i w
k
i

, k = 1, 2, ...

It can be shown that this converges to the maximum likeli-
hood estimate.
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In our case, we are going to simplify expression (S3) by
assuming that αeiy � β, and therefore wi ≈ ei

αy . Under
this assumption, we obtain

ŷ =

∑
i eizi∑
i ei

. (S4)

This assumption holds for brighter pixels and well exposed
images [1].

B. HDR-DSP architecture
Our HDR-DSP architecture has 3 trainable modules:

Motion estimator, Encoder, and Decoder. The Feature
Shift-and-Pool block does not have any trainable parame-
ters. Our motion estimator follows the work of [17]. Our
encoder and our decoder are inspired from the SRResNet
architecture [10], and built from the residual blocks (see
Table S1). Convolutions of the encoder and decoder are
performed using reflection padding. In total, our networks
have 2853411 trainable parameters (Table S2).

Table S1. ResBlock(N)

Input Tensor N channels
Layer 1 Conv2d(in=N, out=N, k=3, s=1, p=1)

ReLU
Layer 2 Conv2d(in=N, out=N, k=3, s=1, p=1)
Output Layer 2 + Input

Table S2. HDR-DSP Architecture

Modules Layers Nb parameters

Motion Estimator FNet [17] 1744354

Encoder Conv2d(in=1, out=64, k=3, s=1, p=1) 332992
ResBlock(64) ×4

ReLU
Conv2d(in=64, out=64, k=3, s=1, p=1)

FS&P 0

Decoder Conv2d(in=64, out=64, k=3, s=1, p=1) 776065
ResBlock(64) ×10

ReLU
Conv2d(in=64, out=1, k=3, s=1, p=1)

Total: 2853411

C. Training details
We train HDR-DSP in two stages, first pretraining the

motion estimator and then the end-to-end system.

Phase 1: Pre-train the Motion Estimator. Training the
motion estimator in the case of images obtained with dif-
ferent exposures is a challenging task. We first pretrain it

on the simulated dataset to ensure that it produces accurate
flows. We monitor the quality of the estimations by compar-
ing with the ground truth flows, until reaching an averaged
error of 0.05 pixel.

For training the motion estimator our first choice was to
use the L1 distance between the reference image and the ra-
diometrically corrected warped image. However, the qual-
ity of the estimated flows were not acceptable (with errors
above 0.1 pixel). Indeed, since motion estimation relies on
the photometric consistency between frames, it is very sen-
sitive to the intensity fluctuations between frames (as it is
the case for our normalized LR frames ILRi ), which results
in imprecise alignments.

To prevent this issue we compute the warping loss on
the details rather than on the images, which is common in
traditional optical flow [11, 17]. The loss is computed for
each flow Fi→r estimated by the MotionEst module

`me({Fi→r}mi=1) =∑
i

‖Detail(ILRi )− Detail
(
Pullback(ILRr , Fi→r)

)
‖1

+ λ1TV (Fi→r), (S5)

where Pullback computes a bicubic warping of ILRr ac-
cording to a flow, Detail applies a high-pass filter to the
images, TV is the finite difference discretization classic To-
tal Variation regularizer [16], and λ1 = 0.003 is a hyperpa-
rameter controlling the regularization strength.

We set the batch size to 32 and use Adam [9] with the
default Pytorch parameters and a initialized learning rate
of 10−4 to optimize the loss. The pre-training converges
after 50k iterations and takes about 3 hours on one NVIDIA
V100 GPU.

Phase 2: Train the whole system end-to-end. We then
use the pretrained motion estimator and train the entire sys-
tem end-to-end using the total loss:

loss = `self + λ2`me. (S6)

We set λ2 = 3 in our experiments. Furthermore, to avoid
boundary issues, the loss does not consider values at a dis-
tance below 2 pixels from the border of the frames.

We train our model on LR crops of size 64 × 64 pixels
and validate on LR images of size 256×256 pixels. During
training, our network is fed with a random number of LR in-
put images (from 4 to 14) in each sequence. We set the batch
size to 16 and optimize the loss using the Adam optimizer
with default parameters. The learning rates are initialized
to 10−4, then scaled by 0.3 each 400 epochs. The training
takes 20h (1200 epochs) on one NVIDIA V100 GPU.



D. Trainable feature pooling alternative

The feature pooling block FSP described in Section 4.1
of the main article does not have any trainable parameters.
In this section we investigate the use of a trainable layer,
named PoolNet, for performing this task.

We considered a simple trainable network PoolNet that
performs feature pooling (Table S3) instead of statistical
feature poolings (Avg-Max-Std) as presented in the paper.
To this aim, PoolNet takes as input the concatenation of
N features JHRi and N weights WHR

i (computed by the
SPMC [19] module from N LR images) and produces the
fused HR features. Then, the Decoder network reconstructs
the HR detail image from the fused features.

A drawback of PoolNet is that it can only be applied
on a fixed number of frames. Table S4 compares the per-
formance of the PoolNet (which replaces the Avg-Max-Std
feature pooling) trained on 4 and 14 frames with our orig-
inal method. We can see that in the case of small number
of frames, PoolNet attains a performance comparable to our
HDR-DSP method using the Avg-Max-Std feature pooling.
However, in the case of 14 frames, there is a big gap of 0.3
dB between our method and PoolNet. It seems that it is
more difficult for PoolNet to capture the necessary statistics
from many features.

E. Alternative exposure weighting strategies

As discussed in the main paper, the LRs with longer ex-
posure time should contribute more to the reconstruction
because of their high signal-to-noise ratio. In our proposed
method, we use the un-normalized LR images as additional
input to the Encoder so as that the Encoder perceives the
noise level in each LR image. Subsequently, the Encoder
can decide which features are more important.

We also evaluated an alternative strategy to weight the
features (WF) based on the exposure times. This simply
consists in weighting the features JLRi by the correspond-
ing exposure time in the SPMC module. Actually, this was
inspired from the ME S&A method.

This strategy leads to slightly worse yet adequate fea-
ture encodings (-0.08dB) as shown in Table S5. Moreover,
using both feature weighting and LRs encoding (third col-
umn) leads to the same performance as only using LRs en-
coding. This implies that the Encoder already encodes the
necessary information about the signal-dependent noise on
the features.

F. Adaptation of existing methods to multi-
exposure sequences

We detail here the adaptations to the algorithms we used
in the comparisons.

ME S&A. Multi-exposure Shift-and-add is a weighted
version of the classic shift-and-add method [5, 7, 8, 12] de-
signed for multi-exposure sequences. Usually, S&A pro-
duces the HR image by registering the LR images onto
the HR grid using the corresponding optical flows. After
the registration step, the intensities of the LR images are
splatted to the neighborhood integer-coordinate pixels using
some kernel interpolation. Finally, pixel-wised aggregation
is done to obtain the HR output image. Therefore a naive
method consists of using the classic S&A method on the
normalized LR images. However this ignores the different
signal-to-noise ratios in the normalized images and fails to
greatly reduce the noise. Using the same arguments as in the
Sec. A, we propose the weighted S&A for multi-exposure
sequence

ÎHR =

∑m
i=1 Register(ĪLRi )∑m

i=1 ei
(S7)

where Register maps and splats the un-normalized images
ĪLRi onto the HR grid.

Base-detail ACT (BD ACT). ACT [2] is a traditional
multi-image super-resolution method developed for Planet
SkySat single-exposure sequences. It formulates the recon-
struction as an inverse problem and solves it by an iterative
optimization method. BD ACT extends ACT to support
multi-exposure images by adopting the same base-detail
strategy as proposed in HDR-DSP: the details of the im-
ages are fused by ACT, and the base is reconstructed by the
upsampled average of the bases of the input images.

HighRes-net (HR-net) and RAMS. HighRes-net [4] and
RAMS [18] are two super-resolution methods for multi-
temporal PROBA-V satellite images. However in the
PROBA-V dataset, the identity of the LR reference image is
unavailable. This hinders the true potential of the methods
trained on this dataset. As a result we use the reference-
aware super-resolution [14] of HighRes-net and RAMS. In
HighRes-net, the reference image is used as a shared repre-
sentation for all LR images. Each LR image is embedded
jointly with this reference before being recursively fused.
In RAMS, each LR image is aligned to the reference im-
age before being input to the residual attention block. The
registration step of RAMS is done with inverse composi-
tional algorithm [3], which is robust to noise and brightness
change. As HighRes-net and RAMS are supervised meth-
ods, we also use a radiometric correction on the output be-
fore computing the loss [4].

DSA. Deep shift-and-add [15] DSA is a self-supervised
method for super-resolution of push-frame single-exposure
satellite images. We adapt DSA to multi-exposure case by



Table S3. PoolNet(N) architecture for trainable feature pooling.

Input N Features (64 channels) + N Weights (1 channel)
Conv2d(in=N(64+1), out=256, k=1, s=1, p=0)

ReLU
Conv2d(in=256, out=128, k=1, s=1, p=0)

ReLU
Conv2d(in=128, out=64, k=1, s=1, p=0)

ReLU
Output fused HR feature

Table S4. Trainable feature pooling evaluation. Since the trainable feature pooling networks PoolNet only accepts a fixed number of frames
(in this case 4 and 14) we compare it with HDR-DSP also trained with fixed number of frames.

Methods HDR-DSP HDR-DSP 4 HDR-DSP 14 PoolNet 4 PoolNet 14

PSNR(dB) 4 frames 52.81 52.69 51.31 52.76 N/A
PSNR(dB) 14 frames 55.85 54.26 55.53 N/A 55.55
PSNR(dB) variable n frames 54.70 53.85 54.07 N/A N/A

Table S5. Handling of the signal-dependent noise

Methods HDR-DSP DSP (+WF - LR) DSP (+WF)

PSNR(dB) ME 54.70 54.62 54.70

using the normalized LR images as input. We also use the
loss on the details to train the motion estimator in DSA.

G. Execution time
Table S6 reports the execution time of the methods stud-

ied on the synthetic multi-exposure dataset. Due to its con-
volutional architecture, HighRes-net is the fastest. HDR-
DSP is slightly more costly than DSA since it performs fea-
ture pooling instead of a simple average and requires fusing
the bases together. ME S&A and BD-ACT are both exe-
cuted on CPU, the later being quite costly due to the linear
spline system inversion.

H. Additional comparisons using real SkySat
sequences

Figure S1 presents results obtained on real multi-
exposure SkySat images using 9 frames. This is a challeng-
ing sequence as it contains moving vehicles. Note how the
road markings are better seen in the HDR-DSP result. How-
ever, since HDR-DSP does not account for moving objects
(the motion estimator only predicts smooth motion within a
range of 5 pixels) the cars are blurry.

Figure S2 shows another example of reconstruction on a

real sequence of 7 SkySat images. Even though there are
only 7 images in this sequence and most of them are very
noisy, HDR-DSP is able to produce a clean image. The fine
details are well restored.

I. Exposure error analysis

We observed a discrepancy between the reported expo-
sure time by Planet and correct normalization ratios. This
can be explained by measurement imprecision since the
quantities are in sub-milliseconds range, or by local illu-
mination effects such as vignetting. To estimate the correct
exposure ratio for a given pair of images, we registered the
images using phase correlation, masked saturated pixels and
computed the spatial median of the ratio between the two
frames. We then validated visually that such exposure ra-
tios were more precise that the reported exposure time (less
flicker was observed).

Figure S3 shows the relation between the reported ratio,
and the estimated one. We find that errors are usually in the
order of a few percent, but also observe larger errors. The
nominal exposure times range from 0.4ms to 4.5ms. Note
that the absolute error in exposure the time measurement
is probably constant regardless of the exposure time. How-
ever, when computing the ratio of two exposures with errors
this might result in a large divergence of the ratio, especially
if the exposure in the denominator is a short one.

Note that for the proposed super-resolution method, we
used the imprecise, reported exposure times and not the es-
timated one, as the estimation method itself can fail.



Table S6. Execution time (s) on 200 sequences of size 15× 256× 256 pixels.

Methods RAMS ME S&A HR-net BD-ACT DSA HDR-DSP

Time (s) 93 276 22 555 82 97

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9

ME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSP

ME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSPME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSPME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSPME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSPME S&A Planet L1B [13] BD-ACT [2] DSA [15] Our HDR-DSP

Figure S1. Super-resolution from a real multi-exposure sequence of 9 SkySat images. Top row: Original low resolution images with
different exposures. Middle row: Reconstructions from five methods, including ours trained with self-supervision (right). Bottom row:
Zoom on a detail of the results.
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