
Manifold Learning Benefits GANs (Supplementary Material)

Yao Ni∗,†, Piotr Koniusz∗,§,†, Richard Hartley†,♦, Richard Nock♦,♣,†
†The Australian National University §Data61/CSIRO ♦Google Research

firstname.lastname@anu.edu.au

Below is the contents of our supplementary material:

• §A explains our mathematical notation.

• §B provides further evaluations on CIFAR-10 and
CIFAR-100 (32×32) datasets [30] given the large fea-
ture size of d′ = 1024. We believe that it is valuable
to demonstrate that our method can benefit from such
a large d′ while other methods cannot benefit much
when applying d′=1024 instead of the usual d′=512.

• §C provides results for the limited data setting on
CIFAR-10 and CIFAR-100.

• §D provides results on the ImageNet (32×32) dataset
[9] in order to demonstrate that our LCSA-based
pipeline benefits experiments on GAN for lower reso-
lution images, which are favoured over high resolution
images for instance when enriching training datasets of
few-shot learning approaches. Note that results on Im-
ageNet (64×64) and ImageNet (128×128) are given in
our main submission.

• §E explains why FQGAN suffers from discriminator
overfitting.

• Section F investigates the use of Denoising Auto-
Encoder (DAE) [1] in place of LCSA, and concludes
that LCSA is more beneficial.

• §G investigates the use of fixed β and γ rather than
metaoptimized β and γ. The conclusion is that with
mixing and proximity operators controlled by these pa-
rameters, we can reduce overfititng in the discrimina-
tor while training the manifold dictionary.

• §H illustrates the residual error between X̃ and h(X̃).
The results support our belief that conv. encoder re-
fines LCSA on difficult foreground objects while gen-
erating coarse-to-fine cov. features close to the mani-
fold.

• §I details hyperparameters used in our experiments.
We point out that the majority of parameters remain
unchanged throughout many experiments.

∗Equal contribution. ♣ Brain team (richardnock@google.com).

• §J provides details of the feature encoding methods
and the dictionary learning step.

• §K illustrates examples of images generated with or
without the LCSA coder.

• §L offers proofs for claims of §5.

A. Notations

Capitalized boldface symbols are matrices (e.g., X),
lowercase boldface symbols are vectors (e.g., x), and reg-
ular fonts denote scalars e.g., n, N , l, L, Xi,j is a (i, j)-th
coefficient of X , xi is an i-th coefficient of x. We define a
vector of all-ones as 1 = [1, · · · , 1]

T and concatenation of
αi as [αi]i=1,··· ,I .

B. Experiments on CIFAR-10/100 (d′=1024)

Below we demonstrate that utilizing LCSA in BigGAN
and OmniGAN further enables them to utilize large fea-
ture sizes (d′ = 1024), improving results further. Original
BigGAN and OmniGAN struggle to attain good results for
such a large feature size. Tables 7 verifies our pipelines on
CIFAR-10 and CIFAR-100. Figures 9 and 10 show that our
BigGAN+LCSA and OmniGAN+LCSA continue to learn
while other models struggle to converge.

Model CIFAR-10 CIFAR-100
IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓

BigGAN 9.64 10.71 14.86 11.54 15.11 19.97
FQGAN 9.44 12.59 16.69 11.74 8.49 13.51
BigGAN+LCSA 9.81 3.51 7.55 11.60 5.49 10.37
OmniGAN 9.92 12.11 16.29 12.42 10.11 14.85
OmniGAN+LCSA 10.21 2.94 6.98 13.88 4.97 9.72

Table 7. Results for different models on CIFAR-10 and CIFAR-
100 with d′=1024.

C. Data-limited Generation on CIFAR-10/100

Both DA [66] and ADA [20] limit discriminator overfit-
ting by augmenting the real and generated images that are
passed to the discriminator. However, in case of DA and
ADA, augmentation artifacts leak into the generated images

Model
CIFAR-10 CIFAR-100

100% 20% 10% 100% 20% 10%
IS↑ / tFID↓ / vFID↓ IS↑ / tFID↓ / vFID↓ IS↑ / tFID↓ / vFID↓ IS↑ / tFID↓ / vFID↓ IS↑ / tFID↓ / vFID↓ IS↑ / tFID↓ / vFID↓

BigGAN(d′=256) 9.26 / 5.46 / 9.38 8.70 / 16.25 / 20.37 8.20 / 31.42 / 35.58 10.99 / 7.89 / 12.74 9.94 / 25.96 / 30.89 7.54 / 50.89 / 55.15
+DA 9.39 / 4.47 / 8.58 8.95 / 9.38 / 13.26 8.65 / 18.35 / 22.04 10.91 / 7.30 / 11.99 9.73 / 16.32 / 20.88 9.33 / 27.01 / 31.32
+LeCam 9.48 / 4.25 / 8.27 8.96 / 11.32 / 15.25 8.50 / 26.30 / 30.55 11.44 / 6.53 / 11.23 10.00 / 20.82 / 25.77 8.10 / 39.33 / 44.23
+LCSA 9.51 / 4.12 / 8.20 8.99 / 8.72 / 12.73 8.74 / 12.36 / 16.46 11.02 / 6.38 / 11.13 10.38 / 13.22 / 18.06 10.08 / 21.13 / 25.87
+LeCam+DA 9.47 / 4.29 / 8.29 9.05 / 7.53 / 11.46 8.84 / 12.15 / 15.92 11.15 / 6.55 / 11.34 10.42 / 13.01 / 17.65 9.92 / 21.73 / 26.19
+LCSA+DA 9.50 / 3.75 / 7.83 9.08 / 7.29 / 11.31 8.86 / 10.86 / 14.78 11.21 / 5.76 / 10.52 10.55 / 12.03 / 16.92 10.68 / 19.38 / 24.21
+LCSA+LeCam+DA 9.47 / 3.80 / 7.89 9.04 / 6.95 / 10.95 8.96 / 10.05 / 13.88 11.17 / 5.85 / 10.64 10.67 / 10.16 / 15.00 10.28 / 18.24 / 23.12
OmniGAN(d′=1024) 9.98 / 6.89 / 10.76 8.62 / 37.86 / 42.18 6.59 / 54.04 / 58.71 12.61 / 8.43 / 13.21 10.11 / 40.57 / 44.86 6.87 / 63.41 / 67.46
+DA 10.10 / 4.26 / 8.15 9.47 / 13.56 / 17.34 8.96 / 19.59 / 23.60 12.96 / 7.48 / 12.11 11.42 / 17.72 / 22.49 10.21 / 32.61 / 36.86
+ADA 10.27 / 5.03 / 9.15 9.44 / 27.20 / 31.05 7.72 / 41.82 / 45.36 13.47 / 6.13 / 10.88 12.18 / 13.66 / 18.34 8.81 / 46.74 / 51.03
+LCSA 10.20 / 2.58 / 6.65 9.97 / 5.15 / 9.01 9.74 / 7.66 / 11.47 13.74 / 4.94 / 9.67 12.86 / 11.15 / 15.90 11.85 / 13.82 / 18.56
+LCSA+DA 10.22 / 2.52 / 6.60 9.93 / 5.01 / 8.89 9.75 / 7.46 / 11.35 13.79 / 4.58 / 9.46 12.92 / 11.06 / 15.73 11.88 / 13.68 / 18.44
+LCSA+ADA 10.38 / 2.35 / 6.38 10.12 / 4.48 / 8.41 10.04 / 6.45 / 10.39 13.80 / 4.07 / 8.90 13.78 / 7.45 / 12.11 12.67 / 10.18 / 14.87

Table 8. Comparison of our LCSA with DA, ADA and LeCam on CIFAR-10 and CIFAR-100 given different percentage of training data.

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

25

tF
ID

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

25

vF
ID

BigGAN FQGAN OmniGAN BigGAN+LCSA OmniGAN+LCSA

Figure 9. Evolution of tFID and vFID for different models on
CIFAR-10 with d′=1024. Black dots indicate the minimum FID.

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

25

tF
ID

0 25 50 75 100 125 150 175 195
iterations (×1000)

5

10

15

20

25

vF
ID

BigGAN FQGAN OmniGAN BigGAN+LCSA OmniGAN+LCSA

Figure 10. Evolution of tFID and vFID for different models on
CIFAR-100 with d′=1024. Black dots indicate the minimum FID.

256 512 1024d′=

5
7
10
15

30

50

tF
ID

10% data
256 512 1024

20% data

OmniGAN
DA

ADA
LCSA

LCSA+DA
LCSA+ADA

(a) CIFAR-10

256 512 1024d′=

8
10

15

25
35

50
65

tF
ID

10% data
256 512 1024

20% data

OmniGAN
DA

ADA
LCSA

LCSA+DA
LCSA+ADA

(b) CIFAR-100

Figure 11. tFID w.r.t. different d′ on CIFAR-10 and CIFAR-100
under the limited data setting.

as shown in Figure 24. The LeCamGAN [53] restricts dis-
criminator overfitting by reducing the real/fake loss discrep-
ancy at the output of the discriminator. However, it is not
enough to limit overfitting by just operating at the output

0 25 50 75 100 125 150 175 195
iterations (×1000)

0.0

0.1

0.2

0.3

p
ADA ADA+LCSA

(a) 10% CIFAR-10

0 50 100 150 200 250 300 350 390
iterations (×1000)

0.0

0.1

0.2

0.3

p
ADA ADA+LCSA

(b) 20% CIFAR-10
Figure 12. Augmentation strength (p) of ADA vs. ADA+LCSA
during training on 10%/20% CIFAR-10 data (OmniGAN d′=256).

of the discriminator (otherwise a well-designed loss would
deal with all overfitting issues which is not the case in the
literature). Therefore, we prevent the discriminator overfit-
ting by modifying its blocks by encoding both the features
of real and fake images into a common manifold and recov-
ering their view from it, which has the ability to control the
complexity of our feature space.

Below, we compare our LCSA with DA [66], ADA [20]
on OmniGAN (and/or BigGAN) to variants without LCSA.
We conduct experiments based on BigGAN to compare our
LCSA with LeCamGAN [53] due to the issue of combining
LeCam loss [53] with the multi-output loss of OmniGAN.
Following [66], we augmented the real images with x-flip,
and trained the OmniGAN and BigGAN for 1K epochs on
the full data and 5K epochs on 10%/20% data setting. The
DiffAug used translation and cutout augmentations. The
ADA used 18 augmentations, including rotations and scal-
ing. Details can be founded in [20].

Table 8 shows that our LCSA outperforms DA, ADA and
LeCamGAN. LCSA can be always combined with them to
improve their performance. Specifically, we achieve state-
of-the-art results on CIFAR-10 (100%, 20% and 10%) and
CIFAR-100 (20% and 10%) based on OmniGAN (d′ =
1024). In addition, in Figure 11, OmniGAN, DA and
ADA become worse when increasing the d′, while com-
bining them with our LCSA improves the tFID given the
larger model size, on which the discriminator can memo-

rize the training data easier, demonstrating that our LCSA
has stronger performance while preventing overfitting bet-
ter than ADA and DA alone. Moreover, we find that the
DA and ADA leak the augmentation cues to the generated
images, as shown in Figure 24, indicating that their discrim-
inators overfit to the augmentation cues instead of learning
meaningful discrimination boundary. ADA strives to con-
trol the strength of augmentations by a controller which ob-
serves the discriminator output and adjusts the desired aug-
mentation strength. Thus, in Figure 12 we plot the augmen-
tation strength of ADA and LCSA+ADA. We notice that
LCSA+ADA is able to limit the augmentation strength
of ADA, thus reducing the leakage of augmentation ar-
tifacts. This means LCSA can deal with the discriminator
overfitting well. Concluding, LCSA enjoys better perfor-
mance than ADA, DA, and LeCam for data-limited genera-
tion. LCSA gains further improvements with larger model
size d′, and LCSA lowers the risk of leaking augmentation
artifacts. Thus, LCSA appears to have the superior capabil-
ity of preventing discriminator overfitting than other strate-
gies.

D. Experiments on ImageNet (32×32)
We preprocess images by center-cropping and downscal-

ing them to 32 × 32 pixels. We train the network for 100
epochs. We set mini-batch size to 64, β0 = 0., γ0 = 0.1,
η= 0.5, σ= 1.2, whereas the dictionary learning rate is set
to 1e-3. We equip each residual block of the discriminator
with our LCSA module. We set ∆γ =1.2 for d′=512. For
OmniGAN and OmniGAN+LCSA, we set weight decay of
discriminator to be 1e-4 given d′ = 512. Table 9 presents
our results in the above setting.

Model IS ↑ tFID ↓ vFID ↓
BigGAN 13.25 5.44 5.60
BigGAN+LCSA 13.61 4.82 5.01
OmniGAN 29.55 3.74 4.56
OmniGAN+LCSA 30.53 3.53 4.37

Table 9. Results for ImageNet (32×32).

E. A difference between FQGAN and Hard As-
signment

As we note in §4.2, if M is formed by k-means cluster-
ing, Hard Assignment becomes an equivalent of the quan-
tizer from FQGAN. However, the FQGAN suffers from dis-
criminator overfitting, as we shown in Figures 8, 9 and
10. The FQGAN uses the proximity loss Eq(4), however,
it has no intertwining step between the manifold learning
step with blocks of discriminator. That is, for FQGAN, the
feature input to the next layer from our pipeline Eq(3) is
changed to:

X l+1 = X̃ l (19)
Without the interwining step, without the adaptive mech-

anism, and without LCSA, the FQGAN cannot prevent

blocks in discriminator from over-expressing the learned
features, which may lie outside of the manifold, resulting
in discriminator overfitting.

F. Replacing LCSA with Denoising Auto-
Encoder (DAE)

Figure 13. Architecture of DAE. We plug DAE in place of LCSA
in Figure 2: we replace h(·) based on LCSA with h(·) based on
DAE.

We conduct experiments in which we replace the LCSA
coder with Denoising Auto-Encoder(DAE) [1]. As illus-
trated in Figure 13, two FC layers, each intertwined with
LeakyReLU, form our DAE module. Moreover, we apply
the mixing mechanism from Eq. (3) and the proximity op-
erator from Eq. (4) which is an equivalent of the reconstruc-
tion loss of DAE given in Eq. (18). As Figure 13 indicates,
DAE is equipped with a noise injector ε∼N (0,σ′2) with
variance σ′2 (equivalent in Eq. (18)). We use the multivari-
ate normal distribution which produces noise samples ε that
are added toX ′l, while σ′2 is a vector of on-diagonals equal
σ′2 (off-diagonal coefficients equal 0).

Instead of k (dictionary size), we vary the size of FC lay-
ers (d′×k∗) and (k∗×d′), by varying the size of hidden rep-
resentation k∗. We investigate k∗∈{8, 16, 32, 64, 128, 256}
and σ′2 ∈ {0.01, 0.04, 0.25, 0.64, 1.0}. After searching for
the best set of parameters, we obtain k∗ = 64, σ′2 = 0.04
for CIFAR-10 and k∗=32, σ′2 =0.04 for CIFAR-100. The
DAE module was updated once at each mini-batch.

Table 10 shows that OmniGAN+LCSA outperforms
OmniGAN+DAE, which validates our assumptions on
locality-constrained non-linear manifold learning and its
ability to deal with the noise and regularization of discrimi-
nator.

Model CIFAR-10 CIFAR-100
IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓

OmniGAN 9.70 6.88 10.65 12.78 9.13 13.82
OmniGAN+DAE 10.08 3.89 7.91 13.65 5.52 10.33
OmniGAN+LCSA 10.09 3.29 7.31 13.73 5.12 9.91

Table 10. OmniGAN+DAE vs. OmniGAN+LCSA (d′=512).

G. Fixed β and γ

To verify that metaparameter learning of β and γ works
better than setting fixed β and γ, Table 11 shows for the best
possible fixed β. For each experiment, γ= ∆γβ and ∆γ =
1.2 (same as for learnable experiment). For fixed β and γ,
the best results are obtained with (β = 0.4, γ = 0.48) for
CIFAR-10 and (β = 0.2, γ = 0.24) for CIFAR-100. Figure
14 provides further ablations.

Method CIFAR-10 CIFARR-100
IS ↑ tFID ↓ vFID ↓ IS ↑ tFID ↓ vFID ↓

Fixed 10.01 4.06 8.03 13.64 5.46 10.29
Learnable 10.09 3.29 7.31 13.73 5.12 9.91

Table 11. Best fixed β and γ vs. best metalearnable β and γ.

8

9

10

IS

4

10

65

tF
ID

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0β
8

15

65

vF
ID

(a) CIFAR-10

7

11
14

IS

5

15

85
tF
ID

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0β
10

25

85

vF
ID

(b) CIFAR-100

Figure 14. Fixed β and γ, γ = ∆γβ where ∆γ = 1.2 (as in the
adaptive setting). We show results for several fixed values of β.

H. Illustration of the residual error

We randomly sample images from real dataset on
CIFAR-10, and input them into the discriminator. We obtain
‖X1−X̃1‖2F at the first residual block and normalize for vi-
sualization. Figure 15 shows LCSA coder perpetrates larger
errors at locations of difficult objects and smaller ones at lo-
cations of backgrounds. As Eq. (3).

I. Network architecture and Hyperparameters

Unless specified otherwise, we set k = 1024, σ = 1.2,
γ0 =0, β0 = 0.1, and η = 0.5.
CIFAR-10. Below, we experiment with OmniGAN [69]
which adopts the architecture of BigGAN [5]. We follow
OmniGAN mini-batch size of 32 and train our networks for
500 epochs. To this end, we equip each residual block of the
discriminator with the LCSA module. For our experiments
on CIFAR-10, we apply weight decays of 1e-4, 1e-5 and
0 on generator given d′ = 256, 512, 1024, weight decay 0
for the discriminator. To update the dictionary, we use the
Adam optimizer [24] with learning rate of 0.002. We set
We use ∆γ equal 1.0, 1.2 and 2.5 given d′=256, 512, 1024.
For StyleGAN2+ADA+LCSA, we follow [20] and set η =
0.6. We set ∆γ = 0.05 due to the architecture differences
between StyleGAN2 and BigGAN.
CIFAR-100. We use CIFAR-10 settings but we set the
learning rate of DL to 0.0015, k′=32, and weight decays of
5e-4, 2e-4, 5e-5 for discriminators with d′=256, 512, 1024.
ImageNet (64×64). We equip BigGAN and OmniGAN
with LCSA (the last 3 blocks l ∈ {3, 4, 5}, d′ = 384). We
use the architecture of BigGAN [5]. For OmniGAN and
OmniGAN+LCSA, we set mini-batch size to 256, learning
rates of generator/discriminator to 4e-4, and take 4 discrim-
inator steps per generator step to prevent OmniGAN from
diverging. Weight decays are 0 and 2e-5 for generator and

discriminator. For BigGAN, FQGAN and BigGAN+LCSA,
we apply settings of FQGAN [67] to set mini-batch size to
512, learning rates of generator and discriminator to 1e-4
and 4e-4. We set dictionary learning rate to 1e-3, ∆γ =1.5,
k′= 8. We set σ= 0.8, β0 = 0, γ0 = 0.1 given the discrim-
inator does not overfit on this diverse dataset at the early
training stage. All models are trained for 200 epochs.
ImageNet (128×128). We only equip OmniGAN with
LCSA as OmniGAN consistently outperforms BigGAN.
We use setting from ImageNet (64×64) but set dict. learn-
ing rate to 2e-4 and weight decay of discriminator to 5e-6.
The two models are trained for 300 epochs.
Oxford-102 Flowers (256×256). We employ the state-of-
the-art model for this dataset, MSG-StyleGAN [18], as our
baseline. Following [18], we set the size of mini-batch to
32 while d′=512. We set the number of iteration to 125K,
k′ = 32, ∆γ = 1, η = 0.7, dictionary learning rate is 5e-4,
and LCSA is applied to blocks 4 and 5 of discriminator.
FFHQ (256×256). Following [20], we set the mini-batch
size to 64, d′=512 and train the networks until the discrim-
inator had seen 25M real images. We equip StyleGAN2
with LCSA (the last 4 blocks l∈{4, 5, 6, 7}). We set k′=32,
∆γ=0.05, η=0.9, dictionary learning rate is 5e-4.

Table 12 summarizes hyperparameters used in our exper-
iments. We used a very limited range of these parameters
(most par. do not change between experiments) e.g., dict.
learning rate equals 1e-3, 1.5e-3, 2e-3, 5e-4 or 2e-4, β0 is
set to 0 or 0.1, γ0 is set to 0 or 0.1, ∆γ is set to 0.05, 1, 1.2,
1.5 or 2.5, σ is set to 0.8 or 1.2, η is set to 0.5, 0.6, 0.7 or
0.9, and k′ to 8, 32, or 128.

Table 13 provides number of parameters, FLOPs and the
training time for models with/without the LCSA coder.

J. Coding Methods
Algorithms 1 and 2 detail our implementations of Non-

Negative Sparse Coding (SC+) and Sparse Coding (SC).

Algorithm 1 Non-negative Sparse Coding (SC+).
Input: X,M for a given forward pass, κ: the L1 norm
penalty, ι: the number of iterations, ω: the learning rate.

1: {αin∼U(1e−6, 1)}i=1,··· ,k and n=1,··· ,N ′

2: α←
[

αn
‖αn‖1+1e−6

]
N′

n=1
(concatenate αn into matrix α)

3: for i=1, · · · , ι
4: ∆α=2MT(X−Mα) +κ (gradient computation)
5: α←α− ω

(1+i)0.3 ∆α (stochastic gradient descent)
6: α←ReLU(α) (reprojection into the feasible set)

Output: α: sparse codes

Algorithm 3 is our efficient implementation of the Or-
thogonal Matching Pursuit (OMP) which is based on the
batch support of PyTorch. Operations cat, squeeze, solve

(a) car (b) ‖X̃1 − h(X̃1)‖2F of car (c) bird (d) ‖X̃1 − h(X̃1)‖2F of bird

(e) dog (f) ‖X̃1 − h(X̃1)‖2F of dog (g) horse (h) ‖X̃1 − h(X̃1)‖2F of horse

Figure 15. Real samples and the corresponding ‖X̃1 − h(X̃1)‖2F on CIFAR-10. Whiter pixels correspond to larger ‖X̃1 − h(X̃1)‖2F .

dataset d′ Model dict LR β0 γ0 ∆γ k′ σ η L GWD DWD

CIFAR-10

256 OmniGAN+LCSA 2e-3 0.1 0 1.0 128 1.2 0.5 {1,2,3,4} 1e-4 0

512

BigGAN − − − − − − − − 0 0
BigGAN+LCSA 2e-3 0.1 0 1.2 128 1.2 0.5 {1,2,3,4} 0 0

OmniGAN − − − − − − − − 1e-5 0
OmniGAN+LCSA 2e-3 0.1 0 1.2 128 1.2 0.5 {1,2,3,4} 1e-5 0

StyleGAN2+ADA+LCSA 2e-3 0.1 0 0.05 128 1.2 0.6 {1,2,3,4} 0 0

1024

BigGAN − − − − − − − − 0 0
BigGAN+LCSA 2e-3 0.1 0 2.5 128 1.2 0.5 {1,2,3,4} 0 0

OmniGAN − − − − − − − − 0 0
OmniGAN+LCSA 2e-3 0.1 0 2.5 128 1.2 0.5 {1,2,3,4} 0 0

CIFAR-100

256 OmniGAN+LCSA 1.5e-3 0.1 0 1.0 32 1.2 0.5 {1,2,3,4} 1e-4 5e-4

512

BigGAN − − − − − − − − 0 0
BigGAN+LCSA 1.5e-3 0.1 0 1.2 32 1.2 0.5 {1,2,3,4} 0 0

OmniGAN − − − − − − − − 1e-5 2e-4
OmniGAN+LCSA 1.5e-3 0.1 0 1.2 32 1.2 0.5 {1,2,3,4} 1e-5 2e-4

1024

BigGAN − − − − − − − − 0 0
BigGAN+LCSA 1.5e-3 0.1 0 2.5 32 1.2 0.5 {1,2,3,4} 0 0

OmniGAN − − − − − − − − 0 5e-5
OmniGAN+LCSA 1.5e-3 0.1 0 2.5 32 1.2 0.5 {1,2,3,4} 0 5e-5

384

BigGAN − − − − − − − − 0 0
ImageNet BigGAN+LCSA 1e-3 0 0.1 1.5 8 0.8 0.5 {3,4,5} 0 0
64× 64 OmniGAN − − − − − − − − 0 2e-5

OmniGAN+LCSA 1e-3 0 0.1 1.5 8 0.8 0.5 {3,4,5} 0 2e-5

ImageNet 384 OmniGAN − − − − − − − − 0 5e-6
128× 128 OmniGAN+LCSA 2e-4 0 0.1 1.5 8 0.8 0.5 {4,5,6} 0 5e-6

Oxford-102 512 MSG-StyleGAN − − − − − − − − 0 0
Flowers MSG-StyleGAN+LCSA 5e-4 0.1 0 1 32 1.2 0.7 {4,5} 0 0

FFHQ 512 StyleGAN2+LCSA 5e-4 0.1 0 0.05 32 1.2 0.9 {4,5,6,7} 0 0

Table 12. Hyperparameter used in our experiments. Abbreviation ‘dict LR’ denotes dictionary learning rate, ‘GWD’ and ‘DWD’ are
weight decays of generator and discriminator, respectively.

Dataset Baseline GPUs
Baseline +LCSA

#Par. / FLOPs #Par. / FLOPs
Training Time Training Time

CIFAR-10 OmniGAN 1 32.88M / 11.12G 34.97M / 12.04G
(d′=512) 27h11m 30h54m

CIFAR-100 OmniGAN 1 33.48M / 11.12G 35.57M / 12.04G
(d′=512) 27h29m 30h32m

ImageNet OmniGAN 4 115.69M / 18.84G 118.44M / 19.10G
(64×64) 3d15h 4d01h
ImageNet OmniGAN 4 158.36M / 31.45G 162.29M / 31.86G

(128×128) 20d03h 22d10h
Oxford-102 MSG- 4 50.28M / 85.11G 51.33M / 86.29G

Flowers StyleGAN 22h46m 23h09m

FFHQ StyleGAN2 4 48.76M / 51.64G 50.86M / 53.14G
58h42m 59h51m

Table 13. Number of parameters/FLOPs (for both generator and
discriminator) and training time for models with vs. without the
LCSA encoder. Experiments were performed on NVIDA Tesla
V100 GPUs.

Algorithm 2 Sparse Coding (SC).
Input: X,M for a given forward pass, κ: the L1 norm
penalty, ι: the number of iterations, ω: the learning rate.

1: {αin∼U(−1, 1)}i=1,··· ,k and n=1,··· ,N ′

2: α+ =ReLU(α)+1e−6 and α−=ReLU(−α)+1e−6

3: α+←
[

α+,n

‖α+,n‖1+1e−6

]
N′

n=1
, α−←

[
α−,n

‖α−,n‖1+1e−6

]
N′

n=1
4: for i=1, · · · , ι
5: ∆α=2MT(X−M(α+−α−)) (compute gradient)
6: ∆α+ =∆α+ κ and ∆α−=−∆α+ κ
7: α+←α+− ω

(1+i)0.3 ∆α+ andα−←α−− ω
(1+i)0.3 ∆α−

8: α+←ReLU(α+) and α−←ReLU(α−)

9: α←α+−α−
Output: α: sparse codes

and one hot are equivalent to PyTorch methods with the
same names while � is the element-wise multiplication.

Algorithm 4 illustrates that Locality-constrained Linear
Coding (LLC) is computed with operations which enjoy the
batch support of PyTorch. Once more, operation solve is
equivalent to the batch-wise linear solver of PyTorch.

Algorithm 5 is a sketch implementation of Locality-
constrained Soft Assignment (LCSA). Function idx nn
firstly computes distancesD ofX toM as:

D=[‖x1‖22, · · · , ‖xN ′‖22]·1T + 1·[‖m1‖22, · · · , ‖mk‖22]T

− 2MTX. (20)

Subsequently, function ktop implemented in PyTorch se-
lects k′ indexes of k′ smallest distances from D for each
xn.

Algorithm 6 illustrates how we perform the Dictionary
Learning (DL) step. While we could solve the Least

Algorithm 3 Orthogonal Matching Pursuit (OMP).
Input: X,M for a given forward pass, τ : the number of
non-zero elements (iterations).

1: E=X (initialize matrix of residuals)
2: M∗=∅ (active dictionary tensorM∗∈Rd′×0×N ′)
3: for i=1, · · · , τ
4: P =MTE (projection ofX onto residual E)
5: ϕi= idx max(|P |) (index of maximum coefficient
6: per column)
7: M∗= cat(M∗, [mϕi1

, · · · ,mϕi
N′

]; 1) (active atoms

8: are added to tensorM∗ so thatM∗∈Rd′×i×N ′)
9: for n=1, · · · , N ′ (this loop is batch solved)

10: M̄=squeeze(M :,:,n) (dict. M̄ ∈Rd′×i for xn)
11: αn=solve(M̄

T
xn,M̄

T
M̄) (system of linear

12: equations solved by batch solver torch.solve(·)
13: en=xn−M̄αn (residual solved by batch ope-
14: rations at once, that is, E≡ [e1, · · · , eN ′])
15: α=one hot([ϕ1, · · · , ϕτ])�[α1, · · · ,αN ′]
Output: α: sparse codes

Algorithm 4 Locality-constrained Linear Coding (LLC).
Input: X,M for a given forward pass, k′: the k′ nearest
neighbors, ρ: a small reg. constant equal 1e−6.

1: for n=1, · · · , N ′ (this loop is batch solved)
2: Cn=(M−1xTn)(M−1xTn)T (so-called data cov.)
3: αn=solve(1,Cn + diag(1)·ρ) (matrix left div. by 1)
4: αn←αn/

∑
j αjn (normalization)

5: α=[α1, · · · ,αN ′] (concatenation of vectors αn into
6: matrix α)

Output: α: locality-constrained linear codes

Algorithm 5 Locality-constrained Soft Assignment
(LCSA).
Input: X,M for a given forward pass, k′: the k′ nearest
neighbors, σ: the bandwidth controlling the slope rate.

1: for n=1, · · · , N ′ (this loop is batch solved)
2: ϕ= idx nn(xn;M , k′) (k′ indexes of k′ nearestmj

3: of xn)
4: α′n=α′(xn; [mϕ1

, · · · ,mϕk′]) (SA computed by
5: Eq. (15) on local dictionary)
6: αn=π(α′n;ϕ, k) (deploy coeff. of α′n to locations
7: ϕ of k dim. zeroed vector)
8: α=[α1, · · · ,αN ′] (concat. vectors αn into matrix α)

Output: α: locality-constrained soft-assigned codes

Squares Problem in the closed-form, we noted that a sim-
ple one step of SGD per mini-batch is sufficient to obtain
good results. Of course, where needed and/or requested by
reviewers, we will refine our claims and proofs further.

(a) OmniGAN, d′=256 (b) OmniGAN+LCSA, d′=256 (c) OmniGAN+LCSA, d′=512 (d) OmniGAN+LCSA, d′=1024

Figure 16. Examples of images generated after training on CIFAR-10 (32× 32).

Algorithm 6 Dictionary Learning (DL).
Input: X,M ,α for a given forward pass, ω: the learning
rate.

1: {mij∼U(−1, 1)}i=1,··· ,d′ and j=1,··· ,k

2: M←
[

mj

‖mj‖1+1e−6

]k
j=1

(concat. ofmj into matrixM)

3: for i=1, · · · , ι
4: ∆M=2(X−Mα)αT (gradient computation)
5: M←M− ω

(1+i)0.3 ∆M (gradient descent)

Output: M : dictionary atoms

K. Generated Images
Figures 16, 17, 18, 19, and 20 show examples of im-

ages generated with OminGAN vs. OmniGAN+LCSA af-
ter training on CIFAR-10 (32 × 32), CIFAR-100 (32 ×
32), ImageNet (64 × 64) (we also include BigGAN &
BigGAN+LCSA) and ImageNet (128× 128). Figure 21
shows examples of images generated with MSG-StyleGAN
vs. MSG-StyleGAN+LCSA after training on Oxford-102
Flowers (256×256). Figures 22 and 23 shows examples of
images generated with StyleGAN2 vs. StyleGAN2+LCSA
for training on FFHQ (256×256).

(a) OmniGAN, d′=256 (b) OmniGAN+LCSA, d′=256 (c) OmniGAN+LCSA, d′=512 (d) OmniGAN+LCSA, d′=1024

Figure 17. Examples of images generated after training on CIFAR-100 (32 × 32). Each row contains samples from two classes. We note
that OmniGAN+LCSA produces more diverse images than OmniGAN.

(a) BigGAN (b) BigGAN+LCSA
Figure 18. Images generated by BigGAN and BigGAN+LCSA on ImageNet (64×64). Our BigGAN+LCSA can generate more diverse
and realistic images than BigGAN. We also note that the BigGAN has completely failed on class pickelhaube (the 3rd row).

(a) OmniGAN (b) OmniGAN+LCSA
Figure 19. Images generated by OmniGAN and OmniGAN+LCSA on ImageNet (64×64). Our OmniGAN+LCSA produces more diverse
and accurate images than OmniGAN alone.

(a) OmniGAN (b) OmniGAN+LCSA

Figure 20. Generated images on ImageNet (128×128) dataset. Our OmniGAN+LCSA can generate more diverse and realistic images than
OmniGAN.

(a) MSG-StyleGAN (b) MSG-StyleGAN+LCSA

Figure 21. Generated images using the mixing of different input noises on Oxford-102 Flowers (256 × 256). Two sets of images are
generated from their respective latent codes (the first row and the first column, respectively). The top left image (red box) is generated
using the averaged latent inputs from images in the first row and the first column. The rest of images are generated by averaging the two
latent inputs of images chosen from the first row and the first column i.e., Ii,j = G((zi,1 + z1,j)/2). We input the same noise codes to
both of the two models. Our MSG-StyleGAN+LCSA can generate more diverse and accurate flowers than MSG-StyleGAN alone.

(a) StyleGAN2 (b) StyleGAN2+LCSA

Figure 22. Examples of images generated by training on FFHQ (256× 256) 70K dataset with truncation trick using ψ=0.5 [21].

(a) StyleGAN2 (b) StyleGAN2+LCSA

Figure 23. Examples of images generated by training on FFHQ (256×256) 70K dataset without using the truncation trick. We notice that
our StyleGAN2+LCSA can generate more realistic images than StyleGAN2 alone.

(a) DA (leak cutout) (b) DA+LCSA (c) ADA (leak rotation) (d) ADA+LCSA

Figure 24. Generated images of different methods limiting overfitting on 10% CIFAR-10 data. DA leaks the cutout augmentation
artifacts. See images enclosed with red frames. ADA also leaks the rotation augmentation artifacts. Combining LCSA with ADA or
DA prevents the leakage of augmentation artifacts.

Figure 25. B1(LCSA LLC NNSC OMP), B2(LCSA LLC NNSC OMP), B3(LCSA LLC NNSC OMP), B4(LCSA LLC NNSC OMP).
B1, B2, B3 and B4 denote the consecutive blocks of the discriminator. The first column shows the chosen images and remaining columns
show the variance of coefficients of each α. Notice that LCSA results in a slightly larger variance on foregrounds and edges of objects
than other coders while still maintaining a low variance on fairly basic visual appearances such as uniform backgrounds or simple textures.
We believe this is the example of the ability of LCSA to perform the quantization (backgrounds) vs. the approximate linear coding
(foregrounds) trade-off which is controlled with the Lipschitz constant K (de facto σ).

(a) LCSA (b) LLC (c) NNSC (d) OMP

Figure 26. Mean over variance of each α on block B1. The first 10 rows correspond to the mean over variance of coefficients of each α
codes of each class, the last row is the mean over variance of coefficients of each α over all classes. Notice that the combined variance of
LCSA is again somewhat larger compared to NNSC and OMP but also lower than LLC in the areas of background. This indicates a good
trade-off between quantization and reconstruction capacity of LCSA.

L. Sketch Proofs of Claims from Section 5

Below we provide proofs and proof sketches of properties of LCSA. We note that some of mathematics for α′ functions is
cumbersome, thus we resort to key intuitions where necessary. We use one column display to ease readability of some math
formulas. Before embarking on the proofs, we develop key quantities about α′. Since it lives on the probability simplex,
we compute Shannon’s entropy S(·) = −Eα′ [logα′] of α′ (α being α′ composed with a linear operator, its fundamental
geometric properties follow from α′). We recall

α′(x;M , σ) =
1

Z(x;M , σ)

[
e−

1
2σ2
||x−m1||22 , · · · , e− 1

2σ2
||x−mk||22

]T
(21)

After some algebra that we skip for readability, we arrive at the statistical form of the gradient ∇S and Hessian HS at any x
(skipped from notations for readability)

∇S(x) =
Ep[δ]
2σ2

· (Eq[m]− Ep[m]),

HS(x) =
Ep[δ]
2σ4

· Eq[(m− Ep[m])(m− Ep[m])T]− 2 + Ep[δ]
2σ4

· Ep[(m− Ep[m])(m− Ep[m])T],

where expectations are with respect to dictionary’s columns, and for any such column mi, we let δi =
‖x−mi‖22

σ2 and p, q are

the distributions in the k-dim probability simplex with pi ∝ exp
(
−‖x−mi‖22

2σ2

)
and qi ∝ piδi. From the shape operator of the

entropy (see e.g. [41]),

sS = − 1√
1 + ‖∇S‖22

· (I +∇S∇ST)−1HS,

we deduce the general formula for the mean curvature of S (using Sherman-Morrison Lemma to get rid of the inverse and
properties of the trace),

hS =
1

k
√

1 + ‖∇S‖22
· tr
((

I− 1

1 + ‖∇S‖22
· ∇S∇ST

)
· −HS

)
=

1

k(1 + ‖∇S‖22)
3
2

·
[
∇STHS∇S − ‖∇S‖22 · tr(HS)− tr(HS)

]
.

(a) σ2 =1 (b) σ2 =9

Figure 27. Illustration of α of LCSA. Two-dimensional anchors [m1,m2,m3] were used (three poles). LCSA was applied w.r.t. x ∈
[−5, 5]2. Responses α′=[α′1, α

′
2, α
′
3] are given in three colors.

For any vector a on the k-dim probability simples, let us use the shorthand µa = Ea[m]. Let us define, for any two such
vectors a, b,

J(a, b) = Ea[‖m‖22]‖µb − µa‖22 − Ea[((µa − µb)Tm)2] + (µ>b µa)2 − ‖µa‖22‖µb‖22. (22)

Notice that Cauchy-Schwartz inequality brings

Ea[((µa − µb)Tm)2] ≤ Ea[‖m‖22]‖µb − µa‖22, (23)
(µ>b µa)2 ≤ ‖µa‖22‖µb‖22, (24)

so we get a useful interval to which J(a, b) belongs: J(a, b) ∈ I(x;M , σ) with:

I(x;M , σ) =
[
−
(
‖µa‖22‖µb‖22 − (µ>b µa)2

)
,Ea[‖m‖22]‖µb − µa‖22 − Ea[((µa − µb)Tm)2]

]
, (25)

and we note that those Cauchy-Schwartz inequalities (23), (24) also yield

0 ∈ I(x;M , σ). (26)

After some more derivations, we arrive at the expression

hS =

(

Ep[δ]
2σ2

)2

· 2+Ep[δ]
2σ4 ·

(
Ep[‖m‖22]‖µq − µp‖22 − Ep[((µp − µq)Tm)2] + (µ>q µp)

2 − ‖µp‖22‖µq‖22
)

−
(

Ep[δ]
2σ2

)2

· Ep[δ]
2σ4 ·

(
Eq[‖m‖22]‖µq − µp‖22 − Eq[((µp − µq)Tm)2] + (µTp µq)

2 − ‖µp‖22‖µq‖22
)

k

(
1 +

(
Ep[δ]
2σ2

)2

· ‖µq − µp‖22
) 3

2

=
(Ep[δ])2

kσ2
· (2 + Ep[δ]) · J(p, q)− Ep[δ] · J(q,p)(

4σ4 + (Ep[δ])2 · ‖µq − µp‖22
) 3

2

. (27)

We are now ready to develop the proofs (or proof sketches) to our various Claims:

Proof of Claim 1. Since

1

(z + a)
3
2

=
1

a
3
2

− 3z

2a
5
2

+ o(z),

we get the Taylor expansion of hS in (27) as σ → 0 (Q,R 6= 0):

hS =
Q

kσ2
+ σ2R+ o(σ2).

So hS diverges at rate 1/σ2 as σ → 0, which shows that the entropy’s support approaches a vertex of the probability simplex
(where its curvature is maximal) and we get the HA solution.

Proof of Claim 2. We analyze cases for which hS → 0. Looking at (27), we see several scenarii: (i) Ep[δ] is small. This
only happens when all the dictionary columns are close to each other and x is close to them. In Fig. 27, this would amount to
brings all poles close to each other and would thus bring regions of linearity, i.e. the intersection of Voronoi cells, close to each
other. Another case, (ii), is when ‖µq − µp‖2 ≤ ε with a decreasing ε, because then both bounds of interval I(x;M , σ) are
O(ε2) and so the mean curvature vanishes as well. Looking atµq−µp, one can see that the norm of their differences vanishes
in particular when there are two sets of dictionary anchors, one which are far away from x, and thus with low weight on both p
and q, and a second set, closer tox and such that all norms ‖m.−x‖2 are approximately constant, which precisely mean thatx
is close to the center of the Voronoi cell defined by those anchors. There is also a simple visual argument: Figure 27 shows that
the rapid slope change takes place atµ12 = 1

2 (m1+m2),µ13 = 1
2 (m1+m3),µ23 = 1

2 (m2+m3) andµ123 = 1
3 (m1+m2+m3).

In fact, maximizing over the absolute value of derivatives of each α′i w.r.t. x, that is, argmaxtx′
∣∣∣∂α′i∂x′

∣∣∣, yields maximum at

locations µΛ(k′), where operator argmaxt returns top t= |Λ|maxima, Λ returns all possible ordered subsets of non-zero sizes
of anchor indexes i= 1, · · · , k′ e.g., for k′ = 3 we have {(1, 2), (1, 3), (2, 3), (1, 2, 3)}= Λ(3). At {µΛ(k′)} locations, the
maximum indicates the largest slope changes which coincide with the linear slope regime of sigmoid function.

Proof of Claim 3. To this end, we seek the stationary points of ε2 = ‖x−∑kmkαk(x;M , σ)‖22 where

αk =
exp(−‖x−mk‖2/2σ2)

Z
,

just as in (21) andmk are dictionary atoms defining the Voronoi cell of x. By setting ∂ε2

∂σ = 0 we obtain

− 2

σ3
(x−Mα(x))

(∑
i

miαi(x)
(
‖x−mi‖22)− c

))
= 0

where c =
∑
k‖x −mk‖22αk(x). It is trivial to see that the first maximum is at the stationary point σ = ∞. Moreover, for

σ = 0 we have also the stationary point as

− 2

σ3
(x−Mα(x))

(∑
i

miαi(x)
(
‖x−mi‖22)− c

))
= 0 (28)

− 2

σ3

(
x−Mα(x))

(
(
∑
i

miαi(x)‖x−mi‖22
)
−
(∑

i

miα
2
i (x)‖x−mi‖22

))
= 0 (29)

because if σ = 0 then∑
i

miαi(x)‖x−mi‖22 =
∑
i

miα
2
i (x)‖x−mi‖22. (30)

The last condition follows from the simplification of c due to the fact that for σ = 0, α codes obey the Hard Assignment,
that is only one coefficient of α is equal one, the rest are equal zero.

It is easy to see the other stationary point occurs if x = Mα(x) which we already identified as the case of perfect
reconstruction.

The last set of stationary points needs to satisfy∑
i

miαi(x)
(
d2
i −

∑
k

d2
kαk(x)

)
= 0,

where d2
i = ‖x−mi‖22 (for d2

k just substitute k in place of i), and for these points we have checked via simulations that they
yield the minimum reconstruction error.

Proof of Claim 4 (Lipschitz condition). Define y = Mα(x) = h(x), where α is the LCSA mapping. The task is to
compute the Jacobian matrix ∂y/∂x. Therefore we compute ∂yi/∂xj .

We have
y =

∑
k

mkαk (31)

where

αk =
exp(−‖x−mk‖2/2σ2)

Z

and Z is defined so that
∑
k αk = 1. From this we get

∂(αkZ)

∂xj
= exp(−‖x−mk‖2/2σ2) (mkj − xj)/σ2

= Zαk(mkj − xj)/σ2,

(32)

where mkj is the j-th component ofmk.

In addition, since Z =
∑
k αkZ, summing (32) we get

∂Z

∂xj
=
∑
k

Zαk(mkj − xj)/σ2 . (33)

From (31) we have,

yi =

∑
kmki(αkZ)

Z
,

where we have multiplied top and bottom by Z, for convenience. We differentiate this as a quotient, using (32) and (33),
giving

σ2 ∂yi
∂xj

=
Z
(∑

kmkiZαk(mkj − xj)
)
−
(∑

kmki(αkZ)
)(∑

k Zαk(mkj − xj)
)

Z2

=
∑
k

mkiαk(mkj − xj)−
(∑

k

mkiαk

)(∑
k

αk(mkj − xj)
)

cancelling Z2

=
∑
k

mkiαk(mkj − xj)−
(∑

k

mkiαk

)((∑
k

αkmkj

)
− xj

)
since

∑
k

αkxj = xj

=
∑
k

mkiαkmkj −
(∑

k

mkiαk

)(∑
k

αkmkj

)
cancelling xj

=
∑
k

αkmkimkj − yiyj . (34)

Finally, writing m̃k = mk − y, this gives
∂yi
∂xj

=
1

σ2

∑
k

αkm̃kim̃kj . (35)

This shows the interesting fact that the Jacobian is symmetric positive-semidefinite, and can be written in a way depending
only on y = h(x), but not on x directly.

A further interesting result can be derived from (35). Let dx be an infinitessimal change in x. The corresponding
infinitessimal change in y is computed by

dyi =
∂yi
∂x

dx

=
∑
j

∂yi
∂xj

dxj

=
1

σ2

∑
k

αkm̃ki

∑
j

m̃kjdxj after interchanging summation order

=
1

σ2

∑
k

αkm̃ki

〈
m̃k, dx

〉
.

Now, if dx is perpendicular to the simplex ∆, then it is perpendicular to each m̃k, so the inner product vanishes. Conse-
quently, dyi vanishes for all i, and dy = 0. This shows that if x varies in a direction perpendicular to the simplex, then the
value of y = h(x) does not change. This is a verification of the fact that h(x) is constant on fibres perpendicular to the
simplex ∆.

The formula (34) can be written neatly using matrices. Suppose thatM is the matrix with columnsmk. Then we have

σ2 ∂y

∂x
= Mdiag(α)MT − yyT

= M(diag(α)−ααT)MT ,

(36)

Lipschitz condition – L1. A Lipschitz constant for a function y = h(x) with respect to some norm ‖ · ‖ is a constant K
such that

‖y − y′‖ ≤ K‖x− x′‖ .
For a differentiable function a Lipschitz constant for the L1 vector norm is given by

K = max
j
‖∂y/∂xj‖1

evaluated over the domain of the function (a single Voronoi cell for instance).
From (35) we have

K = (1/σ2) max
j

∥∥∥∑
k

αkm̃k m̃kj

∥∥∥
1

≤ (1/σ2) max
j

∑
k

‖αkm̃km̃kj‖1 triangle inequality

≤ (1/σ2)
∑
k

max
j
‖αkm̃km̃kj‖1 interchanging max and sum

= (1/σ2)
∑
k

max
j
αk|m̃kj | ‖m̃k‖1 taking scalars outside the norm

= (1/σ2)
∑
k

αk‖m̃k‖1 max
j
|m̃kj | taking terms outside max

j

= (1/σ2)
∑
k

αk‖m̃k‖1 ‖m̃k‖∞

≤ (1/σ2) max
k
‖m̃k‖1 ‖m̃k‖∞ since

∑
k

αk = 1

This leads to

K ≤ maxk ‖m̃k‖21
σ2

Since m̃k = mk − y and y can vary, we see that ‖m̃k‖2 ≤ D2 where D (with respect to the given norm) is the diameter
of the simplex with vertices mk. (The diameter of a set is the supremum of distances between two points in the set.) This
gives finally

K ≤ D2

σ2
.

This will be true for any norm that is greater than the∞-norm for all points. However, it therefore applies to any norm that
is greater than a multiple of the∞-norm. Therefore we can conclude Proposition 2.4 as follows.

Proposition 2.4: For any norm ‖ · ‖ on Rd equivalent to the 2-norm, a Lipschitz constant for the LCSA mapping on a given
Voronoi region is given by

K =
D2

σ2

where D is the diameter of the simplex ∆.

Lipschitz condition – L2. For the L2 norm a Lipschitz constant is given by

K = max
‖v‖

‖Jv‖
‖v‖

where v is a vector and J = ∂yi/∂xj is the Jacobian. In the case where J is symmetric positive definite (such as in the
present case), this is equal to

K = max
‖v‖=1

vTJv . (37)

With J = ∂yi/∂xj =
∑
k αkm̃kim̃kj/σ

2 as in (35) this becomes

vTJv = (1/σ2)
∑
k

αk
〈
m̃k,v

〉2
≤ (1/σ2) max

k

〈
m̃k,v

〉2
.

This quantity is maximized, over vectors v of norm 1 when v = arg maxk ‖m̃k‖ (up to scale), in which case it is equal to
maxk ‖m̃k‖2/σ2. This shows that when ‖v‖ = 1,

vTJv ≤ max
k
‖m̃k‖2/σ2

≤ D2/σ2. (38)

This shows that the same Lipschitz constant K = D2/σ2 holds for the L2 as for the L1 Lipschitz condition.

Proof of Claim 5. The LCSA encoding Mα(x) is non-continuous at the boundaries of the Voronoi regions simply because
the set of k′ nearest neighbor anchors of x changes as x crosses from one Voronoi region to another the Voronoi region.

Proof of Claim 7. We penalise the spectral norm of Jacobian matrix
∥∥∥∂Mα(x)

∂x

∥∥∥
2

=K via de facto controlling the Lipschitz

constant K=D2/σ2 because this is shown in (37) and (38).

Claims 1–8 highlight that LCSA can perform the feature quantization in some regions of the feature space (proximity of
dictionary atoms), as well as it can perform the approximate linear coding akin to linear coding methods (the proximity of the
mean of atoms of Voronoi cell). The Lipschitz constant highlights that our σ controls denoising achieved via LCSA due to
the mechanism akin to DAE (whose denoising effect is controlled by its σ′). Our blocks in the GAN discriminator can guide
the dictionary atoms and conv. features towards quantization or reconstruction with higher linear fidelity, also selecting some
intermediate denoising hypothesis as the Lipschitz constant poses the upper bound controlling denoising effect.

