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A. Implementation details
A.1. Pose Estimation (Section 3.2)

MLP TΘ takes the positionally encoded frame id as input
and outputs a vector of 9P dimensions. The 3P dimensions
correspond to each element of ti, and the remaining 6P
dimensions correspond Ri. For the rotation matrix calcu-
lation, please refer to Zhou et al. [13], Section B. TΘ is a
4-layer MLP with a hidden dimension of 256.

A.2. SDF Computation of an Ellipsoid (Section 3.3)

The merit of using ellipsoids as the representation of the
parts is that their SDFs are continuous functions and can be
computed cheaply. In this subsection, we explain how to
calculate the SDF of an ellipsoid. First, the surface of an
ellipsoid of radii r is given by

f(x, r) =
x2

1

r2
1

+
x2

2

r2
2

+
x2

3

r2
3

= 1, (1)

where position x = (x1, x2, x3) and radii r = (r1, r2, r3).
We calculate the SDF of an ellipsoid as follows. First, from
the query point x, we find the nearest ellipsoid surface point
xe. Since this cannot be solved analytically, we use La-
grange’s multiplier method and Newton’s method to find
the point. The cost function L is defined as

L = |x− xe|22 − λ(f(xe, r)− 1), (2)

and we solve ∂L
∂xe

= ∂L
∂λ = 0. This can be transformed into

the following equations{
xe = r2 � (r2 + λ)� x (3)
|r� (r2 + λ)� x|22 = 1, (4)

where � is element-wise division, � is element-wise prod-
uct, and a2 = a � a. We use Newton’s method to find
the largest solution for λ in Equation 4 and substitute it into
Equation 3 to get xe.

The distance between the searched point and the input
point x is the absolute value of the SDF, which has a neg-
ative sign when x is inside the ellipsoid and a positive sign

when it is outside:

SDF(x, r) = sign(f(x, r)− 1)|x− xe|2. (5)

However, since xe is computed numerically, the gradient is
not propagated to r. Therefore, we re-parametrize xe using
r by projecting xe onto the surface of the unit sphere and
back onto the surface of the ellipsoid.

x̃e = (xe � r).detach()� r, (6)

where � is element-wise division, � is element-wise prod-
uct, and detach() is a stop-gradient operation.

Finally, the differentiable SDF of an ellipsoid is com-
puted as,

SDF(x, r) = sign(f(x, r)− 1)|x− x̃e|2. (7)

A.3. Shape and Appearance Decoder (Section 3.3)

MLP SΘ takes a feature vector f at a query 3D loca-
tion xg and outputs the color c and a residual SDFs ∆̃d.
The color on the surface of real objects changes in complex
ways according to the time, pose, and view direction. We
simplify the problem by assuming the color depends only
on f , meaning the color is constant across view and time.
SΘ is a 8-layer MLP with a hidden dimension of 256.

A.4. Joint Candidates (Section 3.5.1)

In this subsection, we explain the details of the joint
candidates defined in the Section 3.5.1 in the main paper.
When a point inside one ellipsoid ei is close to a point in-
side another ellipsoid ej throughout the entire video, the
point is considered to be a joint between parts i and j. To
find these points, we create several joint candidate points
{ξni }{n=1:N} inside the ellipsoids in advance, and minimize
the distance between them. We define six candidates inside
each ellipsoid in the local coordinate, as follows

ξ̂
n

i = ri � ξn, (8)

where ξn ∈ {(± 3
4 , 0, 0), (0,± 3

4 , 0), (0, 0,± 3
4 )}. This is

then transformed into the global coordinate system using
the rotation and translation of each part

ξni = Riξ̂
n

i + ti. (9)
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A.5. Frame scheduling (Section 3.6)

In order to stabilize the training, we progressively in-
crease the number of frames used for training. First, we use
the first T0 frames of data to train for τ0 iterations. Then,
the number of frames used for training is increased linearly
so that all frames T of the video are used at τ1 iteration.
After that, all frames are used for training until τfinal. In the
experiment using human data, we set T0 = 10, τ0 = 10k
τ1 = 80k.

A.6. Loss (Section 3.6)

The loss function is a weighted sum of LSDF, Lphoto, LΓ,
Lmerge, LE , Lt, and Lseparation:

Ltotal =λSDFLSDF + λphotoLphoto + λΓLΓ+ (10)
λmergeLmerge + λELE + λtLt + λseparationLseparation.

We used λSDF = 0.2, λphoto = 1, λmerge = 0, λE = 600,
λt = 1000, and λseparation = 1. We gradually increase LΓ

from 2 to 50 until iteration τ0 for training stability. From
iteration τ2, we set λmerge = 5 and train the model until
τfinal. We set τ2 = 150k.

A.7. Other Training Details

The other hyper-parameters were set as dmax = 0.02,
λl = 0.02, λmotion = 3, D̄ = 0.1, ε = 0.01. For the
weighted positional encoding in Equation 4 in the main
paper, we apply positional encoding [8] to spatial loca-
tions xi with 6 frequencies following the training setting
of NeuS [12].

We used AdamW optimizer [7] with learning rate
0.0003, and β1 = 0.9, β2 = 0.999, λ = 0.005. All training
images are resized to 512 × 512. We train the model up
to τfinal = 200k iterations with a batch size of 16. We ran-
domly sample 384 rays from each image for human data,
where P is set to 20. Training takes about 48 hours on a
single NVIDIA A100 GPU.

A.8. Pose Manipulation (Section 4.1)

Since our method estimates explicit joint relationships
between parts, we can freely manipulate the pose of the ob-
ject. First, the position of the final joints ξi,j is defined as
the midpoint of the candidate points ξmi and ξnj connected
in Equations 16 and 17 of the main paper:

ξi,j =
1

2
(ξmi + ξnj ) s.t. (m,n) = arg min

m,n
l̄ m,ni,j . (11)

By manually rotating the part i or j and its children parts
around this joint ξi,j , the pose of the object can be freely
changed, and novel rotations and translations for each part
can be obtained {Ri, ti}novel

{i=1:P}. To render the novel pose
image, we directly input {Ri, ti}novel

{i=1:P} to the second net-
work SΘ.

A.9. Baselines (Section 4.3)

Kundu* et al. [6] Their original model estimates SMPL
parameters in an unsupervised manner as follows. First, a
CNN-based encoder receives an image and estimates the pa-
rameters of the SMPL model. Based on the estimated pa-
rameters, the SMPL mesh is deformed and a pixel value of
the image is assigned to each vertex according to its posi-
tion in the image. The model is trained to match the colors
of the estimated mesh vertices from different images of the
same person at different times. By using CNN-based en-
coder, they can reconstruct the mesh from unseen monoc-
ular images. However, our method uses videos of specific
scenes from multiple viewpoints, which gives us an unfair
advantage. In order to allow for a fair comparison between
our method and theirs, we replaced their CNN-based en-
coder with an MLP T Kundu*

Θ that takes frame id as input and
estimates SMPL parameters for each frame.

T Kundu*
Θ : γ(t)→ R(t), t(t),θ(t),β, (12)

where R(t) is a global orientation, t(t) is a global transla-
tion, θ(t) is joint poses, and β is a shape parameters. An
overview of the method is visualized in Figure A (a). This
MLP allows Kundu∗ et al. to overfit to the specific video se-
quence, like our method does. Please note that β is not time
dependent. The structure of the MLP T Kundu*

Θ is the same as
that of TΘ used in the proposed method except for the out-
put dimension. Since the authors do not publish their train-
ing implementation, all modules and loss functions are our
replicated implementation. For the human pose prior, in-
stead of training the adversarial auto-encoder, we used the
pre-trained human pose prior from Bogo et al. [1]. Also,
since our experimental setup uses multi-view videos and
overfits to a single subject, we do not use reflectional sym-
metry or shape-consistency loss. Please refer to Kundu et
al. [6] for more details. In addition, since human foreground
masks are available in our experimental setup, we use a dif-
ferentiable renderer [10] to render the mask of the mesh and
train it so that the L2 norm with the GT foreground mask
is small. We apply the same frame scheduling as in Sec-
tion A.5 for training stabilization.

After training the model, we assign colors to the vertices
of the SMPL mesh for novel view and pose synthesis, where
we average the estimated vertex color for various frame ids
and viewpoints using the learned SMPL poses.

Schmidtke* et al. [11] Their original model trains the de-
formation of a 2D template of a person’s structure in an un-
supervised manner using image reconstruction. They use
a CNN-based encoder to estimate the 2D deformation pa-
rameters. To extend the method to 3D, we replaced the 2D
templates with 3D templates, where the shape is approxi-
mated with 3D gaussians. For a fair comparison, we also
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Figure A: Baselines used for comparison. The ∗ indicates that these are adaptations of the original methods.

replaced the CNN-based encoder with an MLP T Schmidtke*
Θ

that takes a frame id as input and outputs the deformation
parameters of the template in the global coordinate, as in
Kundu* et al.

T Schmidtke*
Θ : γ(t)→ {Ri(t), ti(t), si}{i=1:18}, (13)

where Ri(t) and ti(t) are rotation and translation for each
part, and si is 3D scale parameters for each part. An
overview of the method is visualized in Figure A (b). We
replace the affine transformation Θi defined in Equation 3
in Schmidtke et al. [11] with a physically meaningful trans-
formation

Θ =


s1R1,1 s1R1,2 s1R1,3 t1
s2R2,1 s2R2,2 s2R2,3 t2
s3R3,1 s3R3,2 s3R3,3 t3

0 0 0 1

 . (14)

Please note that si is not time dependent. The deformed 3D
template is projected onto a 2D heatmap using the view-
point of the training image, and then transformed into an
RGB image using a second CNN-based network. Since
the model is overfitted on a single scene, we do not input
the reference frame to the second network, but only the
2D heatmap. We modified the implementation based on
their public training code1, and the loss function used for
training is exactly the same as the original. Please refer to
Schmidtke et al. [11] for more details.

We apply the same frame scheduling as in Section A.5
for training stabilization.

A.10. Regression of GT SMPL Pose (Section 4.2,
4.4)

For human re-posing we learn a linear mapping from the
GT SMPL poses to estimated joints and for joint evalua-
tion we learn a mapping from the estimated joints to the GT
SMPL poses.

1https://github.com/lschmidtke/shape_templates

Mapping from SMPL For re-posing, we perform a re-
gression from the GT SMPL mesh to our part pose Ri and
ti. First, for all frames of the training data, we optimize
the linear transformation X from the mesh vertices V(t) to
the concatenation of the learned part centers and the candi-
date points P(t) = CAT{ti, ξ1

i , . . . , ξ
N
i }{i=1:P}(t) using

the least-squares method

min
X

(∑
t

|XV(t)−P(t)|F +
1

2
λ|X|F

)
. (15)

When re-posing with SMPL meshes, we com-
pute the part centers and candidate points Pnew =
CAT{ti, ξ1

i , . . . , ξ
N
i }new
{i=1:P} corresponding to the novel

pose SMPL mesh Vnew using the learned linear transfor-
mation X,

Pnew = XVnew. (16)

The part centers tnew
i of the new pose are obtained by ex-

tracting the corresponding elements of Pnew
i . The rotation

matrix Rnew
i is obtained by solving the following optimiza-

tion:

min
Rnew

i

|Rnew
i Ξ̂i − Ξi|F s.t. (Rnew

i )>Rnew
i = I, (17)

where Ξ̂i =
[
ξ̂

1

i , . . . , ξ̂
N

i

]
, Ξi =

[
ξ1
i − ti, . . . , ξ

N
i − ti

]
.

By using the resulting tnew
i and Rnew

i into the second net-
work SΘ directly, we can re-pose the object.

Similarly, for the re-posing of the baseline Schmidtke* et
al. [11], the part center ti of the 3D template and the points
around it

ξni ∈ {ti ± rR1
i , ti ± rR2

i , ti ± rR3
i } (18)

are used to learn the same linear mapping, where Ri =
[R1

i ,R
2
i ,R

3
i ] and r = 0.1.

Mapping to SMPL To evaluate the joint, we regress the
translation J(t) = CAT{ji}{i=1:23}(t) of the GT SMPL
joints at frame t from the learned object poses at t, where

https://github.com/lschmidtke/shape_templates


Figure B: The robots in our datasets.

CAT is the concatenation operator. We obtain a linear map-
ping X from the learned poses to the SMPL joints by solv-
ing the following optimization problem:

min
X

( ∑
t∈Ttrain

|XP(t)− J(t)|F +
1

2
λ|X|F

)
, (19)

where Ttrain is the set of frames used for this optimization,
which are uniform sample of 10% of the available frames.

For joint evaluation, a learned linear transformation X
was applied to the remaining frames to compute the mean
per joint position error (MPJPE) [4] between the regressed
joint position and the GT joint position.

Similarly, for the baseline Schmidtke* et al. [11], we
learn a linear mapping from the part center ti of the 3D
template and the points around it ξni defined in Equation 18
to the GT SMPL joints.

For the evaluation of Kundu* et al. [6], we learn a linear
regression X from the learned SMPL mesh vertices VKundu
to the GT SMPL joints

min
X

( ∑
t∈Ttrain

|XVKundu(t)− J(t)|F +
1

2
λ|X|F

)
. (20)

We evaluated both models in the same way as ours.

A.11. Effect of Lt (Section 4.5)

Qualitative results with and without Lt are shown in Fig-
ure C. We can see that the parts sometimes do not cover the
entire object or go outside of the object without Lt. This
result demonstrates the effectiveness of Lt.

B. Training on the RGBD-Dog Dataset
We used RGBD-Dog dataset [5] for training the dog

model. We apply off-the-shelf instance segmentation
model [2] to obtain the ground truth masks. In this dataset,
it is not possible to isolate the exact region of the dog due
to occlusion by a person or overlapping background objects.

Figure C: Learned structures with and without Lt. Each line con-
nects the center of each part. Red marks show the parts that should
be noted.

Therefore, we modified the loss function to ignore occluded
regions and regions where the estimated mask is unreliable.
Specifically, when calculating Lphoto, LE , and Lt, we re-
place the loss values with 0 for elements that use unreliable
pixels in their calculations.

C. Robot dataset

In order to demonstrate the applicability of our method
to objects with various structures, we created a dataset of
robots with seven different structures, see Figure B. The
dataset consists of 1000 frames of synchronized video with
20 viewpoints per robot. We sampled five of these views
and trained on the first 300 frames of each video.

In order to generate the dataset we use a recent python-
based renderer, NViSII [9]. We use robots that are freely
available and have URDF associated with 3D meshes. In
order to animate the robot, we use PyBullet [3]. The robot
is given random joint goals, and once it reaches these goals,
we repeat the process of giving it random joint goals. We
place 20 fixed cameras on the hemisphere at a fixed dis-
tance from the robot, and we add a warm sunlight to add
more light to the scene. Each frame is rendered with 2000
samples per pixel at 512×512 resolution. We use the Op-
tiX denoiser to clean the final renders to provide noise free
images. Both the datasets and the scripts to generate the
multiview animated objects will be available at https:
//github.com/NVlabs/watch-it-move.

D. Additional Results for Parts Merging

Additional results of parts merging are shown in Fig-
ure D (a). The results confirm that meaningful parts and
the structure are obtained by merging. To show the effect
of Lmerge, we show the merging results when it is disabled
in Figure D (b). It can be seen that by using Lmerge, we can
appropriately pull parts together that have the same relative
motion, and learn more meaningful decomposition of parts.

https://github.com/NVlabs/watch-it-move
https://github.com/NVlabs/watch-it-move


Figure D: (a) Additional results for part merging. From left to right, we show the initial joints and structure, the joints and structure after
merging, and the connection between the centers of the parts. Since there is no joint at the endpoint, the center of the part is connected
instead (red lines). A polygonal path indicates a part that is connected to multiple parts. The centers of the parts are shown for clarity. (b)
Joints and part centers obtained when Lmerge is disabled.
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