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S1. Overview

We elaborate on the validity of our proposed pruning
method in detail. To summarize, we have following items:
e In Section S2, we validate the necessity of the regulariza-

tion loss annealing during training.

e In Section S3, we show that our Search framework is also
effective at various N:M configurations.

e In Section S4, we provide further experimental results on
the adaptive inference scheme on image deblurring task.

e Finally, in Section S5, we provide the implementation de-
tails for reproducibility.

S2. Effectiveness of Scheduling ),

Our pruning framework prunes a pretrained network
by jointly optimizing the task loss and the computational
amount regularization loss until the pruned model meets the
target computational budget. As discussed in Section 3.5, a
large constant weight for A, leads to immature pruning.
The induced performance drop is significant even after the
following fine-tuning process. On the other hand, if A4 is
smaller, the model fails to meet the target budget. To over-
come this dilemma, we adaptively change A4 by monitor-
ing the progress of the pruning rates in the last few epochs
(Eq. (7)).

In addition to the quantitative validation in Table 3 in
the main manuscript, we contrast the effect of proper A4
scheduling by loss curve as the learning progresses in Fig-
ure S1. From a constant \,., without the scheduling, the
model rapidly deteriorates with the spiking task loss. In
contrast, our scheduling on )., prunes the model in a mod-
erate speed so that the optimization becomes easier even
with a relatively less number of fine-tuning epochs. These
results imply the effectiveness of our \,., scheduling.

S3. Generalization to Various M Values

In Tables 1 and 2 of the main manuscript, we presented
the N:M pruning results when M = 32 to elaborate the
effectiveness of our SLS framework in an extreme pruning
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Figure S1. Task loss curves with (blue curve) and without (orange
curve) Areg scheduling. The highlighted parts indicate the moment
when the target budget (é of the original computational costs) is
reached in each case. In the case of “W/O Scheduling’, we set A.cq
as the final value of A,y in “W/ Scheduling’.

ratio up to roughly 93.75%. We show that our SLS gener-
alizes to other configurations by quantitative comparisons
with various M values.

Tables S1 and S2 show the pruning results on image de-
blurring and super-resolution models for M € {8, 16, 32},
respectively. For all methods, the restoration performance
tend to degrade when M is smaller. Nevertheless, SLS con-
sistently outperforms others on both tasks and for all M.
Empirically, SLS is generalized well on various M.

S4. Adaptive Inference on Image Deblurring

In Section 4.7 and Figure 7 in the main manuscript, we
showed that our adaptive inference exhibits an improved
trade-off between PSNR and GMAC:s for super-resolution
task. We further validate the adaptive inference is also ef-
fective in image deblurring, as shown in Figure S2. Specifi-
cally, we trained an auxiliary network to predict the MSE er-
ror of the deblurred patches from 3 DMPHN models pruned
by SLS and identity mapping (no processing). Using the es-



Table S1. Image deblurring performance comparisons on GOPRO
dataset [39].

Model Method GMACs Num. Param. PSNR; /SSIM; / LPIPS
Unpruned 458.04 6.79M 29.46/0.8837/0.1686
Filter pruning 115.42 1.70M 28.79/0.8692 /0.1893
One-shot (8:32)  117.24 1.70M 29.19/0.8771/0.1795
SR-STE (8:32) 117.24 1.70M 28.85/0.8691/0.1860
SLS (Ours) 116.64 1.55M 29.37/0.8811/ 0.1740

UNet  One-shot (4:16)  117.24 1.70M 29.17/0.8765/0.1801
SR-STE (4:16) 117.24 1.70M 28.81/0.8684/0.1876
SLS (Ours) 116.31 1.51M 29.31/0.8800/ 0.1751
One-shot (2:8) 117.24 1.70M 29.11/0.8741/0.1812
SR-STE (2:8) 117.24 1.70M 28.75/0.8675/0.1898
SLS (Ours) 116.18 1.49M 29.20/0.8767 / 0.1794

Table S2. Image super-resolution performace (PSNR+) compar-
isons on benchmark datasets with the scaling factor of 4.

Model Method GMACs Num. Param. Setl4/B100 / Urban100

Unpruned 39.86 828.75K 28.52/27.51/2591
Filter pruning 10.44 214.77K 16.50/17.32/15.52
One-shot (8:32)  10.10 210.00K 28.46/27.47125.73
SR-STE (8:32) 10.10 210.00K 28.33/27.41/25.59
SLS (Ours) 10.05 240.17K 28.50/27.50 / 25.84
RFDN  One-shot (4:16)  10.10 210.00K 28.44/27.46/25.73
SR-STE (4:16) 10.10 210.00K 28.35/27.42/25.60
SLS (Ours) 10.03 250.66K 28.50/27.49/25.82
One-shot (2:8) 10.10 210.00K 28.43/27.46/25.71
SR-STE (2:8) 10.10 210.00K 28.40/27.42/25.63
SLS (Ours) 10.02 260.58K 28.48/27.49/25.82

timated MSE and the expected computational costs for the
input patch, the adaptive inference path is determined by the
Equation (8). For instance, a relatively sharp input patch can
be fed to output by identity mapping or a model with high
pruning ratio (i.e. 93.75%) and a severely blurry patch could
be processed by the model with a higher accuracy. The re-
sults show that our adaptive inference scheme can find the
better trade-off between efficiency and the deblurring per-
formance. In all experimental results on the adaptive infer-
ence for both super-resolution and deblurring tasks, we re-
port the computational costs containing the additional over-
head from overlapping.

S5. Additional Implementation Details

To show the effectiveness of our SLS framework, we
performed additional experiments on state-of-the-art image
deblurring and super-resolution networks. For image de-
blurring, we used a residual UNet [40], SRN [51], and
DMPHN [59]. The residual UNet used in [40] is a light-
weight model in terms of GMACs while SRN [51] and
DMPHN [59] are the relatively heavier models. Following
[40], we used a modified version of DMPHN by removing
the multi-patch hierarchy for higher baseline accuracy. All
models for deblurring were trained and tested on GOPRO
dataset [39]. After pretraining each model for 2,000 epochs,
we learn to prune the model for 2,000 additional epochs.

For image super-resolution, we used EDSR [28],
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Figure S2. Results of adaptive inference for image deblurring on
GOPRO dataset. We use the identity function and 3 DMPHN mod-
els pruned by SLS with different target budgets.

CARN [2], and RFDN [31] models. EDSR is a heavy archi-
tecture in terms of GMACs, CARN being a mid-weight, and
RFDN [31] is a light-weight architecture. Specifically, we
used EDSR-baseline which has 16 ResBlocks. The super-
resolution models were trained on DIV2K dataset [1] and
evaluated on 3 benchmark datasets, Set14 [58], B100 [35],
and Urban100 [18]. The super-resolution models were pre-
trained for 300 epochs, followed by the pruning process for
300 additional epochs.

When applying SR-STE [63], the model was trained
from scratch for 4,000 epochs for deblurring, 600 epochs
for super-resolution, respectively, for fair comparison. We
prune all convolutional layers with input channel dimension
divisible by M.

For adaptive inference, the auxiliary convolutional net-
work for MSE estimation consists of 0.15 M parameters
and requires 3.45 GMACs for an HD image (1,280x720).
For image deblurring, we crop the test images in GOPRO
dataset into several patches with the size of 246x266 and
overlap 3 and 5 pixels in vertical and horizontal directions,
respectively. For image super-resolution, we crop the test
images on Urban100 dataset into several patched with the
size of 50x50 with the stride of 48. The restored patches
are combined to the original image by removing the over-
lapping areas. We select the value of /3 by a uniform sam-
pling in the range of [0,10].

License of the Used Assets

e GOPRO dataset [39] is a publicly available dataset re-
leased under CC BY 4.0 license.

e DIV2K dataset [1] is made available for academic re-
search purposes.

e B100 dataset [35] is made available by Computer Vision
Group, UC Berkeley



e Urban100 dataset [18] is made available at https: //
github.com/jbhuang0604/SelfExSR

Limitations

We study the layer-wise sparsity search on the general
N:M configurations for extremely efficient image restora-
tion networks. However, the latest Ampere-generation
NVIDIA GPUs only support the acceleration of 2:4 sparsity
pattern, limiting the acceleration of the efficient networks
searched by SLS. The efficient execution of our pruned
models is our future work.



