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S1. Overview

We elaborate on the validity of our proposed pruning

method in detail. To summarize, we have following items:

• In Section S2, we validate the necessity of the regulariza-

tion loss annealing during training.

• In Section S3, we show that our Search framework is also

effective at various N :M configurations.

• In Section S4, we provide further experimental results on

the adaptive inference scheme on image deblurring task.

• Finally, in Section S5, we provide the implementation de-

tails for reproducibility.

S2. Effectiveness of Scheduling λreg

Our pruning framework prunes a pretrained network

by jointly optimizing the task loss and the computational

amount regularization loss until the pruned model meets the

target computational budget. As discussed in Section 3.5, a

large constant weight for λreg leads to immature pruning.

The induced performance drop is significant even after the

following fine-tuning process. On the other hand, if λreg is

smaller, the model fails to meet the target budget. To over-

come this dilemma, we adaptively change λreg by monitor-

ing the progress of the pruning rates in the last few epochs

(Eq. (7)).

In addition to the quantitative validation in Table 3 in

the main manuscript, we contrast the effect of proper λreg

scheduling by loss curve as the learning progresses in Fig-

ure S1. From a constant λreg without the scheduling, the

model rapidly deteriorates with the spiking task loss. In

contrast, our scheduling on λreg prunes the model in a mod-

erate speed so that the optimization becomes easier even

with a relatively less number of fine-tuning epochs. These

results imply the effectiveness of our λreg scheduling.

S3. Generalization to Various M Values

In Tables 1 and 2 of the main manuscript, we presented

the N :M pruning results when M = 32 to elaborate the

effectiveness of our SLS framework in an extreme pruning
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Figure S1. Task loss curves with (blue curve) and without (orange

curve) λreg scheduling. The highlighted parts indicate the moment

when the target budget ( 1
8

of the original computational costs) is

reached in each case. In the case of ‘W/O Scheduling’, we set λreg

as the final value of λreg in ‘W/ Scheduling’.

ratio up to roughly 93.75%. We show that our SLS gener-

alizes to other configurations by quantitative comparisons

with various M values.

Tables S1 and S2 show the pruning results on image de-

blurring and super-resolution models for M ∈ {8, 16, 32},

respectively. For all methods, the restoration performance

tend to degrade when M is smaller. Nevertheless, SLS con-

sistently outperforms others on both tasks and for all M .

Empirically, SLS is generalized well on various M .

S4. Adaptive Inference on Image Deblurring

In Section 4.7 and Figure 7 in the main manuscript, we

showed that our adaptive inference exhibits an improved

trade-off between PSNR and GMACs for super-resolution

task. We further validate the adaptive inference is also ef-

fective in image deblurring, as shown in Figure S2. Specifi-

cally, we trained an auxiliary network to predict the MSE er-

ror of the deblurred patches from 3 DMPHN models pruned

by SLS and identity mapping (no processing). Using the es-



Table S1. Image deblurring performance comparisons on GOPRO

dataset [39].

Model Method GMACs Num. Param. PSNR↑ / SSIM↑ / LPIPS↓

UNet

Unpruned 458.04 6.79M 29.46 / 0.8837 / 0.1686

Filter pruning 115.42 1.70M 28.79 / 0.8692 / 0.1893

One-shot (8:32) 117.24 1.70M 29.19 / 0.8771 / 0.1795

SR-STE (8:32) 117.24 1.70M 28.85 / 0.8691 / 0.1860

SLS (Ours) 116.64 1.55M 29.37 / 0.8811 / 0.1740

One-shot (4:16) 117.24 1.70M 29.17 / 0.8765 / 0.1801

SR-STE (4:16) 117.24 1.70M 28.81 / 0.8684 / 0.1876

SLS (Ours) 116.31 1.51M 29.31 / 0.8800 / 0.1751

One-shot (2:8) 117.24 1.70M 29.11 / 0.8741 / 0.1812

SR-STE (2:8) 117.24 1.70M 28.75 / 0.8675 / 0.1898

SLS (Ours) 116.18 1.49M 29.20 / 0.8767 / 0.1794

Table S2. Image super-resolution performace (PSNR↑) compar-

isons on benchmark datasets with the scaling factor of 4.

Model Method GMACs Num. Param. Set14 / B100 / Urban100

RFDN

Unpruned 39.86 828.75K 28.52 / 27.51 / 25.91

Filter pruning 10.44 214.77K 16.50 / 17.32 / 15.52

One-shot (8:32) 10.10 210.00K 28.46 / 27.47 / 25.73

SR-STE (8:32) 10.10 210.00K 28.33 / 27.41 / 25.59

SLS (Ours) 10.05 240.17K 28.50 / 27.50 / 25.84

One-shot (4:16) 10.10 210.00K 28.44 / 27.46 / 25.73

SR-STE (4:16) 10.10 210.00K 28.35 / 27.42 / 25.60

SLS (Ours) 10.03 250.66K 28.50 / 27.49 / 25.82

One-shot (2:8) 10.10 210.00K 28.43 / 27.46 / 25.71

SR-STE (2:8) 10.10 210.00K 28.40 / 27.42 / 25.63

SLS (Ours) 10.02 260.58K 28.48 / 27.49 / 25.82

timated MSE and the expected computational costs for the

input patch, the adaptive inference path is determined by the

Equation (8). For instance, a relatively sharp input patch can

be fed to output by identity mapping or a model with high

pruning ratio (i.e. 93.75%) and a severely blurry patch could

be processed by the model with a higher accuracy. The re-

sults show that our adaptive inference scheme can find the

better trade-off between efficiency and the deblurring per-

formance. In all experimental results on the adaptive infer-

ence for both super-resolution and deblurring tasks, we re-

port the computational costs containing the additional over-

head from overlapping.

S5. Additional Implementation Details

To show the effectiveness of our SLS framework, we

performed additional experiments on state-of-the-art image

deblurring and super-resolution networks. For image de-

blurring, we used a residual UNet [40], SRN [51], and

DMPHN [59]. The residual UNet used in [40] is a light-

weight model in terms of GMACs while SRN [51] and

DMPHN [59] are the relatively heavier models. Following

[40], we used a modified version of DMPHN by removing

the multi-patch hierarchy for higher baseline accuracy. All

models for deblurring were trained and tested on GOPRO

dataset [39]. After pretraining each model for 2,000 epochs,

we learn to prune the model for 2,000 additional epochs.

For image super-resolution, we used EDSR [28],
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Figure S2. Results of adaptive inference for image deblurring on

GOPRO dataset. We use the identity function and 3 DMPHN mod-

els pruned by SLS with different target budgets.

CARN [2], and RFDN [31] models. EDSR is a heavy archi-

tecture in terms of GMACs, CARN being a mid-weight, and

RFDN [31] is a light-weight architecture. Specifically, we

used EDSR-baseline which has 16 ResBlocks. The super-

resolution models were trained on DIV2K dataset [1] and

evaluated on 3 benchmark datasets, Set14 [58], B100 [35],

and Urban100 [18]. The super-resolution models were pre-

trained for 300 epochs, followed by the pruning process for

300 additional epochs.

When applying SR-STE [63], the model was trained

from scratch for 4,000 epochs for deblurring, 600 epochs

for super-resolution, respectively, for fair comparison. We

prune all convolutional layers with input channel dimension

divisible by M .

For adaptive inference, the auxiliary convolutional net-

work for MSE estimation consists of 0.15 M parameters

and requires 3.45 GMACs for an HD image (1,280×720).

For image deblurring, we crop the test images in GOPRO

dataset into several patches with the size of 246×266 and

overlap 3 and 5 pixels in vertical and horizontal directions,

respectively. For image super-resolution, we crop the test

images on Urban100 dataset into several patched with the

size of 50×50 with the stride of 48. The restored patches

are combined to the original image by removing the over-

lapping areas. We select the value of β by a uniform sam-

pling in the range of [0,10].

License of the Used Assets

• GOPRO dataset [39] is a publicly available dataset re-

leased under CC BY 4.0 license.

• DIV2K dataset [1] is made available for academic re-

search purposes.

• B100 dataset [35] is made available by Computer Vision

Group, UC Berkeley



• Urban100 dataset [18] is made available at https://

github.com/jbhuang0604/SelfExSR

Limitations

We study the layer-wise sparsity search on the general

N :M configurations for extremely efficient image restora-

tion networks. However, the latest Ampere-generation

NVIDIA GPUs only support the acceleration of 2:4 sparsity

pattern, limiting the acceleration of the efficient networks

searched by SLS. The efficient execution of our pruned

models is our future work.


